Electronic structures and instabilities of ZrNCl and HfNCl: implications for superconductivity in the doped compounds

(Note: The full text of this document is currently only available in the PDF Version )

Claudia Felser and Ram Seshadri


Abstract

Amongst the many rules of thumb that prevail in the search for new superconductors is a belief that square nets of metal atoms are crucial to the achievement of high transition temperatures. The recent finding of superconductivity below 26 K in some intercalated β-HfNCl phases suggests that high transition temperatures might be achievable in compounds with triangular or graphite-like nets as well. Here we present key features of high level ab initio band structure calculations on the insulating ZrNCl and HfNCl parent compounds. Electron doping through intercalation has been modeled within a rigid-band framework. Features in the energy isosurfaces of the ‘doped’ compounds are examined for nesting instabilities of the kind that have been implicated in the superconducting properties of high-Tc compounds with square nets. Despite very different electron counts, bonding patterns and atom topologies, it would seem that certain important aspects of the Fermi surfaces of the superconducting Zr(Hf)NCl phases are in many respects very similar to the Fermi surfaces of the cuprate high-Tc superconductors.


References

  1. J. Labbé and J. Friedel, J. Phys. (Paris), 1966, 27, 153 Search PubMed.
  2. J. Labbé and J. Bok, Europhys. Lett., 1987, 3, 1225 Search PubMed.
  3. D. M. Newns, H. R. Krishnamurthy, P. C. Pattnaik, C. C. Tsuei and C. C. Chi, Physica B, 1993, 186, 801 CrossRef.
  4. C. Felser, J. Alloys Compd., 1997, 61, 87 CrossRef.
  5. C. Felser, S. Cramm, D. Johrendt, A. Mewis, O. Jepsen, G. Hohlneicher, W. Eberhardt and O. K. Andersen, Europhys. Lett., 1997, 40, 85 Search PubMed.
  6. C. Felser, R. Seshadri, A. Leist and W. Tremel, J. Mater. Chem., 1998, 8, 787 RSC.
  7. C. Felser, P. Deniard, M. Bäcker, T. Ohm, J. Rouxel and A. Simon, J. Mater. Chem., 1998, 8, 1295 RSC.
  8. M. J. Geselbracht, T. J. Richardson and A. M. Stacey, Nature, 1990, 345, 6273 CrossRef.
  9. D. L. Novikov, V. A. Gubanov and V. G. Zubkov, Phys. Rev. B, 1994, 49, 15830 CrossRef CAS.
  10. R. Seshadri, C. Felser, K. Thieme and W. Tremel, Chem. Mater., 1998, 10, 2189 CrossRef CAS.
  11. S. Yamanaka, H. Kawaji, K. Hotehama and M. Ohashi, Adv. Mater., 1996, 9, 771 CrossRef.
  12. H. Kawaji, K. Hotehama and S. Yamanaka, Chem. Mater., 1997, 9, 2127 CrossRef CAS.
  13. S. Yamanaka, K. Hotehama and H. Kawaji, Nature, 1998, 392, 580 CrossRef CAS.
  14. O. Jepsen and O. K. Andersen, Z. Phys. B, 1995, 97, 35 CAS.
  15. C. Felser, K. Thieme and R. Seshadri, J. Mater. Chem., in press Search PubMed.
  16. P. M. Woodward and T. Vogt, J. Solid State Chem., 1998, 138, 207 CrossRef CAS.
  17. R. Juza and H. Friedrichsen, Z. Anorg. Allg. Chem., 1966, 622, 123.
  18. F. Lissner and T. Schleid, Poster presented at the DFG Solid State Chemistry Symposium, Saarbrücken, Germany, 1998.
  19. H. L. Skriver, The LMTO method, Springer, Berlin, 1984 Search PubMed.
  20. O. K. Andersen and O. Jepsen, et al., The Stuttgart TB-LMTO-ASA Program version 47, MPI für Festkörperforschung, Stuttgart, Germany, 1996.
  21. C. J. Bradley and A. P. Cracknell, The mathematical theory of symmetry in solids, Clarendon Press, Oxford, 1972 Search PubMed.
  22. F. Boucher, O. Jepsen and O. K. Andersen, unpublished results.
  23. S. Wijeyesekera and R. Hoffmann, Organometallics, 1984, 3, 949 CrossRef CAS.
  24. A. Simon, A. Yoshiasa, M. Bäcker, R. W. Henn, C. Felser, R. K. Kremer and Hj. Mattausch, Z. Anorg. Allg. Chem., 1996, 622, 123 CrossRef CAS.
  25. Y. Tian and T. Hughbanks, Inorg. Chem., 1993, 32, 400 CrossRef CAS; K. A. Yee and T. Hughbanks, Inorg. Chem., 1991, 30, 2321 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.