Structural approach of the features of the spin crossover transition in iron (II) compounds

(Note: The full text of this document is currently only available in the PDF Version )

Philippe Guionneau, Jean-François Létard, Dimitrii S. Yufit, Daniel Chasseau, Georges Bravic, Andrés E. Goeta, Judith A. K. Howard and Olivier Kahn


Abstract

We have determined the crystal structures, both in high and low spin state, of four Fe(PM-L)2(NCS)2 complexes, where PM is N-2′-pyridylmethylene and the aromatic subunit L is 4-aminoterphenyl (TeA), 4-(phenylazo)aniline (AzA), 4-aminobiphenyl (BiA) or 4-(phenylethynyl)aniline (PEA). As previously reported, these compounds undergo a spin crossover at low temperature with different features of transition: very smooth and incomplete for Fe(PM-TeA)2(NCS)2, smooth with almost no hysteresis for Fe(PM-AzA)2(NCS)2, unusually abrupt for Fe(PM-BiA)2(NCS)2 and abrupt with a very large hysteresis (37 K) for Fe(PM-PEA)2(NCS)2. In Fe(PM-BiA)2(NCS)2, Fe(PM-TeA)2(NCS)2 and Fe(PM-AzA)2(NCS)2 the spin conversion is not associated with a large structural phase transition and the space group is the same above and below the temperature of transition: orthorhombic Pccn for the two first and monoclinic P21/c for the third. On the other hand, Fe(PM-PEA)2(NCS)2 undergoes a change in the crystal symmetry from P21/c (high spin) to Pccn (low spin) which corresponds to a strong re-organisation of the iron atom network. The evolution as a function of temperature of the FeN6 core as well as of the intramolecular characteristics are almost identical in all four compounds. To a first approximation, the crystal packing is similar in all of the structures except that the P21/c structures develop an asymmetrical molecular environment. Nevertheless, a close examination of the intermolecular interactions, classified as intra- and inter-sheet, show some differences. The intrasheet and the intersheet interactions are stronger in Fe(PM-BiA)2(NCS)2 and Fe(PM-PEA)2(NCS)2 than either in Fe(PM-TeA)2(NCS)2 where no ‘second’ neighbour intrasheet contacts are created, or in Fe(PM-AzA)2(NCS)2 where the intersheet interactions are weak. Thus, the abruptness of the transition is attributed to the combination of close intrasheet and intersheet contacts. The hysteresis effect in Fe(PM-PEA)2(NCS)2 is connected to the phase transition which could occur due to an irregular iron atom network associated with very short carbon-carbon intermolecular contacts at high temperature, not found in Fe(PM-AzA)2(NCS)2 which shows the same irregular iron atom network.


References

  1. H. A. Goodwin, Coord. Chem. Rev., 1976, 18, 293 CrossRef CAS ; P. Gütlich, Struct. Bonding (Berlin), 1981, 44, 83 ; E. König, Prog. Inorg. Chem., 1987, 35, 527 ; P. Gütlich and A. Hauser, Coord. Chem. Rev., 1990, 97, 1 CrossRef ; P. Gütlich, A. Hauser and H. Spiering, Angew. Chem., Int. Ed. Engl., 1994, 33, 2024 CrossRef  and references therein P. Gütlich, J. Jung and H. A. Goodwin, Molecular magnetism: from Molecular Assemblies to the devices, NATO ASI Ser. E, ed. E. Coronado, 1996, vol. 321, pp. 327–378 Search PubMed .
  2. O. Kahn and J. P. Launay, Chemtronics, 1988, 3, 140 Search PubMed ; J. Zarembovitch and O. Kahn, New. J. Chem., 1991, 15, 181 Search PubMed ; O. Kahn, Molecular Magnetism, VCH, New York, 1993 Search PubMed .
  3. W. Vreugdenhil, J. H. van Diemen, R. A. G. de Graaf, J. G. Haasnoot, J. Reedgijk, A. M. Kraan, O. Kahn and J. Zarembovitch, Polyhedron, 1990, 9, 2971 CrossRef CAS ; O. Kahn, J. Kröber and C. Jay, Adv. Mater., 1992, 4, 178 CrossRef ; J. Krôber, J. P. Audière, R. Claude, E. Codjovi, O. Kahn, J. G. Haasnoot, F. Grolière, C. Jay, A. Bousseksou, J. Linarès, F. Varret and A. Gonthier-Vassal, Chem. Mater., 1994, 6, 1404 CrossRef ; L. G. Lavrenova, V. N. Ikorskii, V. A. Varnek, I. M. Oglezneva and S. V. Larionov, Polyhedron, 1995, 14, 1333 CrossRef CAS ; G. Lemercier, M. Verelst, A. Bousseksou, F. Varret and J. P. Tuchagues, Magnetism: A Supramolecular Function, NATO ASI Ser. E, ed. O. Kahn, Kluwer Academic, 1996, pp. 335–356 Search PubMed .
  4. J. F. Létard, P. Guionneau, E. Codjovi, L. Olivier, G. Bravic, D. Chasseau and O. Kahn, J. Am. Chem. Soc., 1997, 199, 10861 CrossRef CAS .
  5. J. F. Létard, P. Guionneau, L. Rabardel, J. A. K. Howard, A. E. Goeta, D. Chasseau and O. Kahn, Inorg. Chem, 1998, 37, 4432 CrossRef CAS  We recall the cell parameters values in HS state (298 K): orthorhombic, Pccn, a= 12.949(7), b= 15.183(2), c= 17.609(5)Å, V= 3462(2)Å3, R= 0.045 and in LS state (140 K): orthorhombic, Pccn, a= 12.370(3), b= 14.764(3), c= 18.281(4)Å, V= 3338(2)Å3, R= 0.043.
  6. V. Ksenofontov, G. Levchenko, H. Spiering, P. Gütlich, J. F. Létard, Y. Bouhedja and O. Kahn, Chem. Phys. Lett., 1998, 294, 545 CrossRef CAS .
  7. J. F. Létard, S. Montant, P. Guionneau, P. Martin, A. Le Calvez, E. Freysz, D. Chasseau, R. Lapouyade and O. Kahn, Chem. Commun., 1997, 745 RSC  See the journal instructions to obtain the corresponding. cif files.
  8. SMART Version 4.050, Siemens Analytical X-ray Instruments, Madison, WI, 1995 .
  9. SAINT Version 4.050, Siemens Analytical X-ray Instruments, Madison, WI, 1995 .
  10. G. M. Sheldrick, SHELXTL-Plus, Release 4.1, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1991 .
  11. G. M. Sheldrick, SADABS Empirical Absorption Program, Univ. of Gottingen, 1995 .
  12. R. C. B. Copley, A. E. Goeta, C. W. Lehmann, J. Cole, D. S. Yufit, J. A. K. Howard and J. Archer, J. Appl. Crystallogr., 1997, 30, 413 CrossRef CAS .
  13. C. J. Gilmore, MITHRIL, J. Appl. Crystallogr., Sect. B, 1984, 17, 42 Search PubMed .
  14. C. Roux, J. Zarembovitch, B. Gallois, T. Granier and R. Claude, Inorg. Chem., 1994, 33, 2273 CrossRef CAS .
  15. E. König and K. J. Watson, Chem. Phys. Lett., 1970, 6, 457 CrossRef .
  16. G. Vos, R. A. G. de Graaf, J. G. Haasnot, A. M. van der Kraan, P. de Vaal and J. Reedijk, Inorg. Chem., 1984, 23, 2905 CrossRef .
  17. J. A. Real, B. Gallois, T. Granier, F. Suez-Panama and J. Zarembovitch, Inorg. Chem., 1992, 31, 4972 CrossRef CAS .
  18. B. Gallois, J. A. Real, C. Hauw and J. Zarembovitch, Inorg. Chem., 1990, 29, 1152 CrossRef CAS .
  19. M. A. Hoselton, L. J. Wilson and R. S. Drago, J. Am. Chem. Soc., 1975, 97, 1722 CrossRef CAS .
  20. M. Mikami and Y. Saito, Acta Crystallogr., Sect. B, 1982, 38, 452 CrossRef .
  21. L. Wiehl, G. Kiel, C. P. Köhler, H. Spiering and P. Gütlich, Inorg. Chem., 1986, 25, 1565 CrossRef CAS .
  22. J. Gaultier, T. Granier, B. Gallois, J. A. Real and J. Zarembovitch, High Pressure Res., 1991, 7, 336 Search PubMed .
  23. T. Granier, B. Gallois, J. Gaultier, J. A. Real and J. Zarembovitch, Inorg. Chem., 1993, 32, 5305 CrossRef CAS .
  24. M. Mikami, M. Konno and Y. Saito, Acta Crystallogr., Sect. B, 1980, 36, 275 CrossRef .
  25. P. Guionneau, J. Gaultier, D. Chasseau, G. Bravic, Y. Barrans, L. Ducasse, D. Kanazawa, P. Day and M. Kurmoo, J. Phys. I Fr., 1996, 6, 1581 Search PubMed ; P. Guionneau, C. J. Kepert, M. Rosseinsky, D. Chasseau, J. Gaultier, M. Kurmoo, M. B. Hursthouse and P. Day, J. Mater. Chem., 1997, 7, 367 Search PubMed ; D. Chasseau, J. Gaultier, G. Bravic, L. Ducasse, M. Kurmoo and P. Day, Proc. R. Soc. London Ser. A, 1993, 442, 207 CAS .
  26. J. K. McCuster, A. L. Rheingold and D. N. Hendrickson, Inorg. Chem., 1996, 35, 2100 CrossRef CAS ; E. König, Struct. Bonding (Berlin), 1991, 76, 51 .
  27. F. Cecconi, M. DiVaira, S. Midollini, A. Orlandini and L. Sacconi, Inorg. Chem., 1981, 20, 2043 .
  28. C.-C. Wu, J. Jung, P. K. Gantzel, P. Gütlich and D. N. Hendrickson, Inorg. Chem., 1997, 36, 5339 CrossRef CAS .
Click here to see how this site uses Cookies. View our privacy policy here.