Selectivity and composition dependence of response of wolframite-based gas sensitive resistors (MWO4)x([Sn-Ti]O2)1–x (0<x<1; M=Mn, Fe, Co, Ni, Cu, Zn)

(Note: The full text of this document is currently only available in the PDF Version )

Vincent Dusastre and David E. Williams


Abstract

The response to carbon monoxide, methane, ammonia and water of gas-sensitive resistors fabricated from wolframite-based solid solution compounds (MWO4)x([Sn-Ti]O2)1–x (0<x<1; M=Mn, Fe, Co, Ni, Cu, Zn) has been studied. The conductance and the activation energy for conductance vary systematically with composition, reflecting the energy and number density of 3d-transition metal states which depend upon the nature of the transition metal ion and its concentration. Tungsten tended to be strongly surface segregated. The surface trap-limited conductivity model can explain, at least partially, the switch from resistance decreasing to resistance increasing response to reducing gases if assumptions are made about the local state occupancy and the energy of these states with respect to the energy associated with O adsorbed on the surface. The sign of response to water was not always consistent with that expected with the other reactive gases. The sign of resistance change associated with adsorption of water can be explained in terms of the surface OH trap energy relative to the Oads2– trap state. There appear to be surface binding sites for water vapour which are specifically associated with particular transition metal ions.


References

  1. P. T. Moseley, A. M. Stoneham and D. E. Williams, in Techniques and Mechanisms in Gas Sensing, ed. P. T. Moseley, J. O. W. Norris and D. E. Williams, Adam Hilger, Bristol, 1991 Search PubMed.
  2. D. E. Williams, in Solid State Gas Sensors, ed. P. T. Moseley and B. C. Tofield, Adam Hilger, Bristol, 1987 Search PubMed.
  3. G. S. Henshaw, D. H. Dawson and D. E. Williams, J. Mater. Chem., 1995, 5, 1791 RSC.
  4. D. H. Dawson, G. S. Henshaw and D. E. Williams, Sens. Actuators B, 1995, 26–27, 76 CrossRef.
  5. G. S. Henshaw, L. J. Gellman and D. E. Williams, J. Mater. Chem., 1994, 4, 1427 RSC.
  6. G. S. Henshaw, V. Dusastre and D. E. Williams, J. Mater. Chem., 1996, 6, 1351 RSC.
  7. G. S. Henshaw, L. Morris, L. J. Gellman and D. E. Williams, J. Mater. Chem., 1996, 6, 1883 RSC.
  8. V. Dusastre and D. E. Williams, J. Phys. Chem. B, 1998, 102, 6732 CrossRef CAS.
  9. D. E. Williams and P. T. Moseley, J. Mater. Chem., 1991, 1, 809 RSC.
  10. R. O. Keeling, Jr., Acta Crystallogr., 1957, 10, 209 CrossRef.
  11. D. Ulku, Z. Kristallogr., 1967, 124, 192.
  12. A. Watterich, G. J. Edwards, O. R. Gilliam, L. A. Kappers, G. Corradi, A. Peter and B. Vajna, J. Phys. Chem. Solids, 1994, 55, 881 CrossRef CAS.
  13. A. Watterich, A. Hofstaetter, R. Wuerz and A. Scharmann, Solid State Commun., 1996, 100, 513 CrossRef CAS.
  14. T. Mathew, N. M. Batra and S. K. Arora, J. Mater. Sci., 1992, 27, 4003 CAS.
  15. R. Bharati, R. A. Singh and Y. P. Yadava, J. Mater. Sci. Lett., 1983, 2, 623 CAS.
  16. R. Bharati, R. A. Singh and B. M. Wanklyn, J. Mater. Sci., 1983, 18, 1540 CAS.
  17. R. Bharati, R. A. Singh and B. M. Wanklyn, J. Mater. Sci., 1981, 16, 775 CAS.
  18. K. Sieber, K. Kourtakis, R. Kershaw, K. Dwight and A. Wold, Mater. Res. Bull., 1982, 17, 721 CAS.
  19. R. Bharati, R. A. Singh and Y. P. Yadava, J. Mater. Sci. Lett., 1983, 2, 808 CAS.
  20. R. Bharati, R. A. Singh and B. M. Wanklyn, J. Phys. Chem. Solids, 1982, 43, 641 CrossRef CAS.
  21. A. J. Nozik, Annu. Rev. Phys. Chem., 1978, 29, 189 CAS.
  22. D. E. Scaife, Sol. Energy, 1980, 25, 41 CrossRef CAS.
  23. J. Tamaki, T. Fujii, K. Fujimori, N. Miura and N. Yamzoe, Sens. Actuators B, 1995, 24–25, 396 CrossRef.
  24. Y. M. Ksendzov, I. L. Koborough, K. K. Sidorin and G. P. Startsev, Sov. Phys. (Solid State), 1976, 18, 99 Search PubMed.
  25. V. Dusastre and D. E. Williams, J. Mater. Chem., 1999, 9, 445 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.