γ-Irradiation preparation and phase control of nanocrystalline CdS

(Note: The full text of this document is currently only available in the PDF Version )

Zhengping Qiao, Yi Xie, Xiaojun Li, Cheng Wang, Yingjie Zhu and Yitai Qian


Abstract

γ-Irradiation has been successfully used to prepare nanocrystalline CdS of sphalerite and wurtzite structure at room temperature. Sodium thiosulfate, mercaptoethanol and carbon disulfide were used as sulfur sources in aqueous solution or anhydrous ethanol. The formation of sphalerite and wurtzite can be controlled by using different sulfur sources in different solvents. Generally, the sulfur sources and solvents with lower polarity tend to produce the cubic wurtzite phase, while those with strong polarity give the hexagonal sphalerite phase. TEM images show that the products in anhydrous ethanol show superior dispersion, and those in aqueous solution aggregate more extensively. Possible mechanisms of the formation of cadmium sulfide in the different systems are proposed.


References

  1. S. William, Jr., Rees and K. Getrud, J. Mater. Res., 1996, 1, 3005.
  2. A. N. Goldstein, C. M. Echer and A. P. Alivisatos, Science, 1992, 256, 1425 CrossRef CAS.
  3. L. Spanhel, M. Haase, H. Weller and A. Henglein, J. Am. Chem. Soc., 1987, 109, 5649 CrossRef CAS.
  4. N. Heron, J. C. Calabrese, W. E. Farneth and Y. Wang, Science, 1993, 259, 1426 CrossRef CAS.
  5. A. G. Stanley, in Cadmium Sulfide Solar Cells Applied Solid State Science 15, ed. R. Wolfe, Academic, New York, 1975 Search PubMed.
  6. R. Williams, P. N. Yocom and F. S. Stofko, J. Colloid Interface Sci., 1985, 106, 388 CrossRef CAS.
  7. A. H. Thompson, Mater. Res. Bull., 1975, 10, 915 CAS.
  8. D. Coucouvanis, Prog. Inorg. Chem., 1979, 26, 301 CAS.
  9. C. B. Murray, D. J. Norris and M. G. Bawendi, J. Am. Chem. Soc., 1993, 115, 8706 CrossRef CAS.
  10. G. Henshaw, I. P. Parkin and G. Shaw, Chem. Commun., 1996, 1095 RSC.
  11. G. Henshaw, I. P. Parkin and G. Shaw, Chem. Commun., 1997, 231 RSC.
  12. Y. J. Zhu, Q. T. Qian, M. W. Zhang, Z. Y. Chen, M. Chen and G. E. Zhou, J. Mater. Sci. Lett., 1994, 13, 1243 CrossRef CAS.
  13. Y. J. Zhu, Q. T. Qian, H. Huang, M. W. Zhang and S. X. Liu, Mater. Lett., 1993, 17, 314 CrossRef CAS.
  14. Y. J. Zhu, Q. T. Qian, M. W. Zhang and Z. Y. Chen, Mater. Sci. Eng. B, 1994, 23, 116 Search PubMed.
  15. Y. J. Zhu, Q. T. Qian, X. J. Li and M. W. Zhang, Chem. Commun., 1997, 1081 RSC.
  16. D. Hayes, O. I. Micic, M. T. Nenadovie, V. Swayambunathan and D. Meisel, J. Phys. Chem., 1989, 93, 4603 CrossRef CAS.
  17. P. N. Moorthy and J. J. Weiss, Nature, 1964, 201, 1317 CAS.
  18. F. Johnston, J. Phys. Chem., 1975, 79, 419 CrossRef CAS.
  19. A. J. Elliot, D. R. McCracken, G. V. Buxton and N. D. Wood, J. Chem. Soc., Faraday Trans., 1990, 86, 1539 RSC.
  20. G. V. Buxton and D. C. Walker, Radiat. Phys. Chem., 1984, 23, 207 CrossRef CAS.
  21. R. L. Eager and D. S. Mahadevappa, Can. J. Chem., 1965, 43, 614 CAS.
  22. The Structures of Non-molecular Solids, ed. G. M. Clark, Applied Science Pub. Ltd, London, 1972, p. 135 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.