Mesogenic properties of single ring compounds: dipentyl derivatives of p-carboranes and bicyclo[2.2.2]octane

(Note: The full text of this document is currently only available in the PDF Version )

Andrew G. Douglass, Birgit Both and Piotr Kaszynski


Abstract

The dipentyl derivatives of 10- and 12-vertex p-carboranes and bicyclo[2.2.2]octane have been prepared and studied in the pure state and in binary mixtures with a nematic host. Only 1,4-dipentylbicyclo[2.2.2]octane was found to exhibit a monotropic nematic transition. The extrapolated virtual nematic-isotropic transition temperatures provide the expected order of ring effectiveness in supporting the nematic mesophase: bicyclo[2.2.2]octane>12-vertex p-carborane >10-vertex p-carborane. The results for the single ring derivatives [1]b were compared with clearing temperatures for the two-ring mesogens [2]c.


References

  1. The only exceptions observed thus far are for those capable of forming intermolecular hydrogen bonding (e.g., carboxylic acids, diols) or with partially stiffened tails using e.g. fluorocarbons (S. Takenaka, Chem. Commun., 1992, 1748) and sigmatropic interactions (A. Mori, H. Takeshita, K. Kida and M. Uchida, J. Am. Chem. Soc., 1990, 112, 8635). For other examples see V. Vill, LiqCryst 3.1 database, LCI Publisher GmbH, Hamburg, Germany (http://liqcryst.chemie.uni-hamburg.de) Search PubMed.
  2. H. M. Abdullah, G. W. Gray and K. J. Toyne, Mol. Cryst. Liq. Cryst., 1985, 124, 105 CAS.
  3. P. Kaszynski, J. Huang, G. S. Jenkins, K. A. Bairamov and D. Lipiak, Mol. Cryst. Liq. Cryst., 1995, 260, 315 Search PubMed.
  4. P. Kaszynski and D. Lipiak, in Materials for Optical Limiting, eds. R. Crane, K. Lewis, E. V. Stryland and M. Khoshnevisan, MRS, Pittsburgh, 1995, vol. 374, p. 341 Search PubMed.
  5. A. G. Douglass, M. Mierzwa and P. Kaszynski, SPIE, 1997, 3319, 59 Search PubMed.
  6. K. Czuprynski, A. G. Douglass, P. Kaszynski and W. Drzewinski, Liq. Cryst., 1999, 26, 261 CrossRef CAS.
  7. A. G. Douglass, K. Czuprynski, M. Mierzwa and P. Kaszynski, Chem. Mater., 1998, 10, 2399 CrossRef CAS.
  8. A. G. Douglass, K. Czuprynski, M. Mierzwa and P. Kaszynski, J. Mater. Chem., 1998, 8, 2391 RSC.
  9. P. Kaszynski and K. Czuprynski, Liq. Cryst., submitted Search PubMed.
  10. A. G. Douglass and P. Kaszynski, J. Org. Chem., submitted Search PubMed.
  11. H. M. Abdullah, M.Sc. Thesis, Hull University, 1983.
  12. G. M. Rubottom and C.-W. Kim, J. Org. Chem., 1983, 48, 1550 CrossRef CAS.
  13. Huang-Minlon, J. Am. Chem. Soc., 1949, 71, 3301 CrossRef CAS.
  14. A. D. Petrov, G. I. Nikishin and V. D. Vorob'ev, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1960, 675 Search PubMed.
  15. The virtual transitions were extrapolated from a single data point and that for the pure host (ref. 2). The danger of such a procedure is apparent from the case of 2 for which some deviation from linearity is observed.
  16. V. ReiVenrath and F. Schneider, Z. Naturforsch., 1981, 36a, 1006 Search PubMed.
  17. Correlation in Fig. 4 should be treated semiquantitatively at best at this point of investigations. Additional assumptions include a) virtual [TNI] for 1,4-dipentylbenzene (4[1]b) in the host, b) equal treatment of N–I and S–I transitions for [2]c, c) equal effect of extending pentyl chain to the heptyl chain on mesogenic properties in the series.
Click here to see how this site uses Cookies. View our privacy policy here.