Gas-sensitive resistor properties of the solid solution series Tix(Sn1–ySby)1–xO2 (0<x<1, y=0, 0.01, 0.05)

(Note: The full text of this document is currently only available in the PDF Version )

Vincent Dusastre and David E. Williams


Abstract

The response to carbon monoxide, methane and water vapour of gas-sensitive resistors fabricated from solid solution compounds Tix(Sn1–ySby)1–xO2 where 0<x<1 and y=0, 0.01, 0.05 has been studied. For the single phase materials the variation of both conductance and conductance activation energy with composition has been explained using either a surface trap limited conductance model for undoped materials or a Schottky barrier controlled conductance for Sb-doped materials. The effect of dopant density and surface composition on the gas response has been explained using a compensated semiconductor conduction model. The surface states controlling response to water vapour are not the same as those controlling response to the combustible gases. The adsorbed oxygen states responsible for gas sensitivity lie closer to the conduction band edge for TiO2 than for SnO2. The surface oxygen states and surface water states are closer in energy on TiO2 than on SnO2. The resistivity and gas sensitivity of spinodally decomposed materials could be interpreted in terms of the phase diagram which indicated no differences from the behaviour of the single-phase components.


References

  1. J. F. McAleer, P. T. Moseley, J. O. W. Norris, D. E. Williams and B. C. Tofield, J. Chem. Soc., Faraday Trans. 1, 1988, 84, 441 RSC.
  2. W.-Y. Chung and D.-D. Lee, Sens. Actuators B, 1993, 13–14, 517 CrossRef CAS.
  3. W.-Y. Chung, D.-D. Lee and B.-K. Sohn, Thin Solid Films, 1992, 221, 304 CrossRef CAS.
  4. D. E. Williams, in Solid State Gas Sensors, ed. P. T. Moseley and B. C. Tofield, Adam Hilger, Bristol, 1987 Search PubMed.
  5. T. Seiyama, N. Yamazoe and H. Arai, Sens. Actuators, 1983, 4, 85 CrossRef CAS.
  6. Y. Shimizu, H. Arai and T. Seiyama, Sens. Actuators, 1985, 7, 11 CrossRef CAS.
  7. D. Garcia and D. Speidel, J. Am. Ceram. Soc., 1972, 556, 322.
  8. M. Park, T. E. Mitchell and A. H. Heuer, J. Am. Ceram. Soc., 1975, 58, 43 CAS.
  9. C. A. Vincent and D. C. G. Weston, J. Electrochem. Soc., 1972, 119, 515 CAS.
  10. P. E. Sinclair, G. Sankar, C. R. A. Catlow, J. M. Thomas and T. Mashmeyer, J. Phys. Chem., 1997, 101, 4232 Search PubMed.
  11. V. E. Henrich and P. A. CoxThe Surface Science of Metal Oxides, Cambridge University Press, Cambridge, 1994 Search PubMed.
  12. N. N. Padurow, Naturwissenschaften, 1956, 43, 395 CAS.
  13. J. W. Cahn, Acta Metall., 1961, 9, 795 Search PubMed.
  14. A. H. Schultz and V. S. Stubican, Philos. Mag., 1968, 18, 929 Search PubMed.
  15. P. K. Gupta and A. R. Cooper, Philos. Mag., 1970, 21, 611 Search PubMed.
  16. J. Takahashi, M. Kuwayama, H. Kamiya, M. Takatsu, T. Oota and I. Yamai, J. Mater. Sci., 1988, 23, 337.
  17. T. C. Yuan and A. V. Virkar, J. Am. Ceram. Soc., 1986, 69, C310.
  18. T. C. Yuan and A. V. Virkar, J. Am. Ceram. Soc., 1988, 71, 12 CAS.
  19. D. E. Williams and P. T. Moseley, J. Mater. Chem., 1991, 1, 809 RSC.
  20. G. S. Henshaw, L. J. Gellman and D. E. Williams, J. Mater. Chem., 1994, 4, 1427 RSC.
  21. C. D. Wagner, in Practical Surface Analysis, 2nd edn., vol. 1 Auger and X-ray Photelectron Spectroscopy, ed. D. Briggs and M. P. Seah, Wiley, Chichester, 1990, p. 595 Search PubMed.
  22. V. Dusastre and D. E. Williams, J. Phys. Chem. B, 1998, 102, 6732 CrossRef CAS.
  23. D. C. Cronemeyer, Phys. Rev., 1952, 87, 876 CrossRef CAS.
  24. K. J. Button, D. G. Fonstad and W. Drey-Bradt, Phys. Rev. B, 1971, 4, 4539 CrossRef.
  25. I. Manassidis, J. Goniakowski, L. N. Kantorovich and M. J. Gillan, Surf. Sci., 1995, 339, 258 CrossRef CAS.
  26. G. S. Henshaw, L. Morris, L. J. Gellman and D. E. Williams, J. Mater. Chem., 1996, 6, 1883 RSC.
  27. N. G. Eror, J. Solid State Chem., 1981, 38, 281 CAS.
  28. G. S. Henshaw, V. Dusastre and D. E. Williams, J. Mater. Chem., 1996, 6, 1351 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.