Synthesis and structure determination of reduced tantalates, Li2LaTa2O7, Li2Ca2Ta3O10 and Na2Ca2Ta3O10, with a layered perovskite structure

(Note: The full text of this document is currently only available in the PDF Version )

Kenji Toda, Masaki Takahashi, Takashi Teranishi, Zuo-Guang Ye, Mineo Sato and Yukio Hinatsu


Abstract

New reduced tantalates, Li2LaTa2O7, Li2Ca2Ta3O10 and Na2Ca2Ta3O10, with a layered perovskite structure have been synthesized by a chemical or an electrochemical intercalation reaction of the alkali metal cations with the parent Dion-Jacobson series compounds. The crystal structures of these compounds were determined by Rietveld analysis of powder X-ray diffraction patterns, and found to be analogous to those of the parent compounds. The intercalation of the lithium ion leads to a large contraction along the stacking direction of perovskite layers because of a higher interlayer charge density. These intercalation compounds are the first example of reduced tantalates with a layered perovskite structure.


References

  1. J. F. Schooley, W. R. Hosler and M. L. Cohen, Phys. Rev. Lett., 1964, 12, 474 CrossRef CAS.
  2. J. M. Bolts and M. S. Wrighton, J. Phys. Chem., 1976, 80, 2641 CrossRef CAS.
  3. R. J. D. Tilley, J. Solid State Chem., 1977, 21, 293 CAS.
  4. H. H. Kung, H. S. Jarett, A. W. Sleight and A. Feretti, J. Appl. Phys., 1977, 48, 2463 CrossRef CAS.
  5. K. Wakino, K. Minai and H. Tamura, J. Am. Ceram. Soc., 1984, 67, 278 CAS.
  6. K. A. Muller and W. Berlinger, Phys. Rev. B, 1986, 34, 6130 CrossRef.
  7. J. D. Bednorz and K. A. Muller, Z. Phys. B, 1986, 64, 189 CAS.
  8. M. Gondrand and J. C. Joubert, Rev. Chim. Miner., 1987, 24, 33 Search PubMed.
  9. J. Gopalakrishnan and V. Bhat, Inorg. Chem., 1987, 26, 4299 CrossRef CAS.
  10. K. Toda, Y. Kameo, M. Fujimoto and M. Sato, J. Ceram. Soc. Jpn., 1994, 102, 737 CAS.
  11. K. Toda, S. Kurita and M. Sato, Solid State Ionics, 1995, 81, 267 CrossRef CAS.
  12. M. Dion, M. Ganne and M. Tournoux, Mater. Res. Bull., 1981, 16, 1429 CrossRef CAS.
  13. A. J. Jacobson, J. T. Lewandowski and J. W. Johnson, J. Less Common Met., 1986, 116, 137 Search PubMed.
  14. R. Jones and W. R. McKinnon, Solid State Ionics, 1991, 45, 173 CrossRef CAS.
  15. P. Gomez-Romero, M. R. Palacin, N. Casan and A. Fuertes, Solid State Ionics, 1993, 63–65, 424 CrossRef CAS.
  16. A. R. Armstrong and P. A. Anderson, Inorg. Chem., 1994, 33, 4366 CrossRef.
  17. M. Sato, T. Jin and H. Ueda, Chem. Lett., 1994, 161 CAS.
  18. C. Bohnke, O. Bohnke and J. L. Fourquet, J. Electrochem. Soc., 1997, 144, 1151 CAS.
  19. H. Fukuoka, T. Isami and S. Yamanaka, Chem. Lett., 1997, 703 CAS.
  20. R. Rousseau, M. R. Palacin, P. Gomez-Romero and E. Canadell, Inorg. Chem., 1996, 35, 1179 CrossRef CAS.
  21. K. Toda and M. Sato, J. Mater. Chem., 1996, 6, 1067 RSC.
  22. Y. Takaki, T. Taniguchi, H. Yamaguchi and T. Ogura, J. Ceram. Soc. Jpn. Int. Ed., 1987, 95, 565.
  23. Y.-I. Kim and F. Izumi, J. Ceram. Soc. Jpn., 1994, 102, 401 CAS.
  24. M. S. Whittingham, Prog. Solid State Chem., 1978, 12, 41 CrossRef CAS.
  25. M. S. Islam and C. R. A. Catlow, J. Solid State Chem., 1988, 77, 180 CAS.
  26. R. D. Shannon, Acta Crystallogr., Sect. A, 1976, 32, 751 CrossRef.
  27. N. K. McGuire and M. O'Keeffe, J. Solid State Chem., 1984, 54, 49 CAS.
  28. K. Toda, Y. Kameo, S. Kurita and M. Sato, J. Alloys Compd, 1996, 234, 19 CrossRef CAS.
  29. A. Fujimori, A. E. Bocquet, K. Morikawa, K. Kobayashi, T. Saitoh, Y. Tokura, I. Hase and M. Onoda, J. Phys. Chem. Solids, 1996, 57, 1379 CrossRef CAS.
  30. Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz and F. Lichtenberg, Nature, 1994, 372, 532 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.