Cobalt-zinc oxide absorbents for low temperature gas desulfurisation

(Note: The full text of this document is currently only available in the PDF Version )

Thomas Baird, Kenneth C. Campbell, Peter J. Holliman, Robert W. Hoyle, Max Huxam, Diane Stirling, B. Peter Williams and Michael Morris


Abstract

The hydrogen sulfide absorption capacity of a series of cobalt-zinc oxides with nominal Co/Zn atomic ratios of 0/100, 10/90, 20/80, 30/70, 40/60, 50/50, 70/30, 90/10 and 100/0 was determined using a continuous flow absorption apparatus. The reaction of the mixed oxides with H2S amounted to ca. 3 monolayers, and is therefore largely confined to the surface of the oxides. The sulfur uptake was found to be proportional to the surface area of the oxides with a Co/Zn ratio ≤40/60, indicating that lattice diffusion played a major role in the rate determining step, and that the main function of the cobalt was to increase the surface area. At high cobalt concentrations, the sulfur uptake increased more than proportionately with surface area and the reaction was virtually stoichiometric for the oxide with a Co/Zn ratio of 100/0. This was associated with a change in the oxide structure from a bulk biphasic ZnO and Co3O4 absorbent with a ZnCo2O4 surface spinel at Co/Zn ratios ≤30 to a monophasic zincian or pure Co3O4 structure at higher cobalt loadings. Analysis of the sulfided mixed oxides showed that microcrystalline membraneous sheets containing cobalt, zinc and sulfur developed on sulfiding. XPS studies of the sulfided oxides indicated that H2S reduced the surface spinel found at Co/Zn ratios ≤30/70 and the zincian/pure Co3O4 found at higher cobalt concentrations to CoO and ZnO prior to the formation of their sulfides. The results are interpreted in terms of a surface reconstruction occurring during sulfiding.


References

  1. C. H. Bartholomew, P. K. Agrawal and J. R. Katzer, Adv. Catal., 1982, 31, 135 CAS.
  2. P. O'Neill, Environmental Chemistry, Chapman and Hall, London, 2nd edn., 1993 Search PubMed.
  3. P. J. H. Carnell and P. E. Starkey, Chem. Eng., 1984, 408, 30 Search PubMed.
  4. P. R. Westmoreland and D. P. Harrison, Environ. Sci. Technol., 1976, 10, 659 CAS.
  5. P. R. Westmoreland, J. B. Gibson and D. P. Harrison, Environ. Sci. Technol., 1977, 11, 488 CAS.
  6. J. M. Cognion, Chim. Ind. Gen. Chim., 1972, 105, 757 Search PubMed.
  7. G. U. Hopton and R. H. Griffith, Gas J., 1946, 247, 4311 Search PubMed.
  8. J. E. Garside and R. F. Phillips, A Textbook of Pure and Applied Chemistry, ed. S. C. Laws, Pitman and Sons, London, 1962, p. 590 Search PubMed.
  9. K. Eddington and P. Carnell, Oil Gas J., 1991, 89, 69 Search PubMed.
  10. G. W. Spicer and C. Woodward, Oil Gas J., 1991, 89, 76 Search PubMed.
  11. T. Baird, P. J. Denny, R. W. Hoyle, F. McMonagle, D. Stirling and J. Tweedy, J. Chem. Soc., Faraday Trans., 1992, 88, 3375 RSC.
  12. T. Baird, K. C. Campbell, P. J. Holliman, R. W. Hoyle, D. Stirling and B. P. Williams, J. Chem. Soc., Faraday Trans., 1996, 92, 445 RSC.
  13. T. Baird, K. C. Campbell, P. J. Holliman, R. W. Hoyle, D. Stirling and B. P. Williams, in Recent advances in oilfield chemistry, ed. P. H. Ogden, RSC Publication, Cambridge, UK, 1994, pp. 234–250 Search PubMed.
  14. T. Baird, K. C. Campbell, P. J. Holliman, R. W. Hoyle, D. Stirling and B. P. Williams, J. Chem. Soc., Faraday Trans., 1995, 91, 3219 RSC.
  15. T. Baird, K. C. Campbell, P. J. Holliman, R. W. Hoyle, D. Stirling, B. P. Williams and M. Morris, J. Mater. Chem., 1997, 7, 319 RSC.
  16. J. H. Schofield, J. Electron Spectrosc. Relat. Phenom., 1976, 8, 129 CrossRef CAS.
  17. D. Briggs and M. P. Seah, Practical Surface Analysis by Auger and XPS, Wiley, Chichester, 1985 Search PubMed.
  18. N. G. Farr and H. J. Griess, J. Electron Spectrosc. Relat. Phenom., 1989, 49, 293 CrossRef CAS.
  19. J. Ferraro, Low Frequency Vibrations of Inorganic and Coordination Compounds, Plenum Press, New York, 1971 Search PubMed.
  20. J. A. Gadsden, Infrared Spectra of Minerals and Related Inorganic Compounds, Butterworths, London, 1975 Search PubMed.
  21. G. Deroubaix and P. Marcus, Surf. Interface Anal., 1992, 18, 39 CAS.
  22. S. W. Gaarenstroom and N. Winograd, J. Chem. Phys., 1977, 67, 3500 CrossRef CAS.
  23. J. J. Chuang, C. R. Brundle and D. W. Rice, Surf. Sci., 1976, 59, 413 CrossRef CAS.
  24. I. Alstrup, I. Chorkendorff, R. Candia, B. S. Clausen and H. Topsoe, J. Catal., 1982, 77, 397 CrossRef CAS.
  25. R. B. Moyes and M. W. Roberts, J. Catal., 1977, 49, 216 CrossRef CAS.
  26. C. D. Wagner, in Handbook of X-Ray and Ultraviolet Photoelectron Spectroscopy, ed. D. Briggs, Heyden, London, 1978 Search PubMed.
  27. C. H. Lawrie, PhD Thesis, Edinburgh, 1991.
  28. P. J. H. Carnell and P. J. Denny, AICHE Ammonia Safety Symp., 1984, 99 Search PubMed.
  29. Yu. V. Furmer, V. S. Beskov, O. I. Brui, V. V. Yudina and M. L. Danstig, Sov. Chem. Ind., 1982, 14, 1499 Search PubMed.
  30. J. R. Anderson and K. C. Pratt, Introduction to Characterisation and Testing of Catalysts, Academic Press, London, 1985 Search PubMed.
  31. G. A. Somorjai, Introduction to Surface Chemistry and Catalysis, Wiley-Interscience, New York, 1994 Search PubMed.
  32. R. V. Siriwardane and J. A. Poston, Appl. Surf. Sci., 1990, 45, 841 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.