Stoichiometry and copper valence in the Ba1–yCuO2+δ system

(Note: The full text of this document is currently only available in the PDF Version )

Kaisa Peitola, Kyoichi Fujinami, Maarit Karppinen, Hisao Yamauchi and Lauri Niinistö


Abstract

The cation stoichiometry and the tunability of oxygen content in the Ba1–yCuO2+δ phase were investigated by means of various methods of chemical analysis. Samples with different nominal metal stoichiometries, ynom ranging from 0 to 0.1, were synthesized. Single-phase samples were obtained for ynom≈0.1, i.e. with about 10 mol% barium deficiency. The possibility to stabilize the Ba1–yCuO2+δ phase with different oxygen stoichiometries was studied thermogravimetrically. Under an argon atmosphere below 400[thin space (1/6-em)]°C a part of the excess oxygen of the fully oxygenated Ba0.9CuO2.01 sample was found to be released in two steps leading to stoichiometries of Ba0.9CuO1.97 and Ba0.9CuO1.94. On the other hand, above 400[thin space (1/6-em)]°C it was possible to continuously tune the oxygen stoichiometry at least down to Ba0.9CuO1.85 (700[thin space (1/6-em)]°C). A decrease in the copper valence with decreasing oxygen content led to an increase in the effective magnetic moment obtained from the magnetic susceptibility measurements performed for two Ba0.9CuO2+δ samples with different oxygen stoichiometries.


References

  1. K. Fujinami, T. Ito, H. Suematsu, K. Matsuura, M. Karppinen and H. Yamauchi, Phys. Rev. B, 1997, 56, 14790 CrossRef CAS.
  2. T. Ito, H. Suematsu, M. Karppinen and H. Yamauchi, Physica C, in press Search PubMed.
  3. S. M. Loureiro, C. Stott, L. Philip, M. F. Gorius, M. Perroux, S. Le Floch, J. J. Capponi, D. Xenikos, P. Toulemonde and J. L. Tholence, Physica C, 1996, 272, 94 CrossRef CAS.
  4. E. F. Paulus, J. Solid State Chem., 1991, 90, 17 CAS.
  5. E. F. Paulus, Z. Kristallogr., 1994, 209, 586 CAS.
  6. W. Wong-Ng and L. P. Cook, Physica B, 1996, 273, 135 CrossRef CAS.
  7. W. Wong-Ng and L. P. Cook, Powder Diffr., 1994, 9, 280 CAS.
  8. R. Kipka and H. Müller-Buschbaum, Z. Naturforsch., Teil B, 1977, 32, 121 Search PubMed.
  9. M. A. G. Aranda and J. P. Attfield, Angew. Chem., Int. Ed. Engl., 1993, 32, 1454 CrossRef.
  10. Y. Y. Skolis and M. L. Kovba, 5th International Workshop: High-Temperature Superconductors and Novel Inorganic Materials Engineering (MSU-HTSC V), March 24–29, 1998, Moscow, Russia. Abstracts, p. 25 Search PubMed.
  11. M. Karppinen, A. Fukuoka, L. Niinistö and H. Yamauchi, Supercond. Sci. Technol., 1996, 9, 121 CrossRef CAS.
  12. M. Karppinen and L. Niinistö, Supercond. Sci. Technol., 1991, 4, 334 CrossRef CAS.
  13. G. Kawamura and M. Hiratani, J. Electrochem. Soc., 1987, 134, 211.
  14. K. Kurusu, H. Takami and K. Shintomi, Analyst, 1989, 114, 1341 RSC.
  15. M. Karppinen, H. Yamauchi and S. Tanaka, J. Solid State Chem., 1993, 104, 276 CrossRef CAS.
  16. J. G. Thompson, J. D. Fitz Gerald, R. L. Withers, P. J. Barlow and S. Anderson, Mater. Res. Bull., 1989, 24, 505 CAS.
  17. E. L. Brosha, H. G. Fernando and I. D. Raistrick, J. Solid State Chem., 1998, 122, 176 CrossRef.
  18. A. F. Maiorova, S. N. Mudretsova, S. F. Pashin and M. A. Bykov, Thermochim. Acta, 1992, 197, 219 CrossRef CAS.
  19. M. T. Weller and D. R. Lines, J. Solid State Chem., 1989, 82, 21 CAS.
  20. K. Peitola, M. Karppinen, H. Rundlöf, R. Tellgren, H. Yamauchi and L. Niinistö, J. Mater. Chem., to be submitted Search PubMed.
  21. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, John Wiley, London 1980, 4th edn., p. 628 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.