Na-4-mica: Cd2+, Ni2+, Co2+, Mn2+ and Zn2+ ion exchange

(Note: The full text of this document is currently only available in the PDF Version )

Tatsuya Kodama and Sridhar Komarneni


Abstract

Selective cation exchange for divalent transition metals of Cd, Ni, Co, Mn and Zn has been investigated with the high-charge-density sodium fluorophlogopite mica, Na-4-mica. The Na-4-mica was easily and economically prepared by the crystallization from a mixture of NaF, MgO and metakaolin, the latter serves as an inexpensive aluminosilicate source. Ion exchange isotherms for Cd2+, Ni2+, Co2+, Mn2+ and Zn2+ were obtained at room temperature and the thermodynamic functions of the ion exchange equilibria were calculated. The 2Na+→M2+ exchange with the Na-4-mica showed the following selectivity: Zn2+>Ni2+≈Co2+≈Cd2+>Mn2+. The interlayer structure of the hydrated Na-4-mica with the open interlayer space in the range 12.1-13.9 Å was retained during the ion-exchange reaction, indicating the possibility of the reversible 2Na+⇄M2+ exchange. The basic selective cation exchange studies of the high-charge-density ion exchanger are of relevance in recovery of metals from waste solution, and waste water treatment and disposal.


References

  1. R. M. Barrer, Zeolites and Clay Minerals as Sorbents and Molecular Sieves, Academic Press, London, 1978, p. 497 Search PubMed.
  2. D. W. Breck, Zeolite Molecular Sieves—Structures, Chemistry, and Use, Wiley, New York, 1974, p. 771 Search PubMed.
  3. Y. Marcus and A. S. Kertes, Ion Exchange and Solvent Extraction of Metal Complexes, John Wiley and Sons, New York, 1969, p. 1037 Search PubMed.
  4. J. M. Kerr, Bull. Am. Ceram. Soc., 1954, 38, 374.
  5. W. J. Lacy, Ind. Eng. Chem., 1954, 46, 1061 CrossRef.
  6. International Atomic Energy Agency (IAEA), Tech. Rep. Ser., 136, IAEA, Vienna, 1972.
  7. R. E. Grim, Clay Mineralogy, McGraw-Hill, New York, 2nd edn., 1968, pp. 188, 104 Search PubMed.
  8. Y. Morikawa, T. Goto, Y. Mora-Oka and T. Ikawa, Chem. Lett., 1988, 1667 CAS.
  9. J. W. Johnson, J. F. Brody, R. M. Alexander, L. N. Yacullo and C. F. Klein, Chem. Mater., 1993, 5, 36 CrossRef CAS.
  10. M. Gregorkiewitz, J. F. Alcover, J. A. Rausell-Colom and J. M. Serratosa, 2eme Reunion des Groupes Europeens d'Argiles, Strasbourg, 1974, p. 64 Search PubMed.
  11. W. J. Paulus, S. Komarneni and R. Roy, Nature (London), 1992, 357, 571 CrossRef CAS.
  12. S. Komarneni, W. J. Paulus and R. Roy, in New Development in Ion Exchange; Proc. Int. Conf. Ion Exchange, 1991, p. 51 Search PubMed.
  13. K. R. Franklin and E. Lee, J. Mater. Chem., 1996, 6, 109 RSC.
  14. S. Komarneni, R. Pidugu and J. E. Amonette, J. Mater. Chem., 1998, 8, 205 RSC.
  15. R. M. Barrer and J. Klinowski, J. Chem. Soc., Faraday Trans. 1, 1974, 70, 2080 RSC.
  16. F. Helfferich, Ion Exchange, Daver, New York, 1995, pp. 170, 185 Search PubMed.
  17. J. Kielland, J. Soc. Chem. Ind., 1935, 54, 232T Search PubMed.
  18. E. Ekedahl, E. Högfeldt and L. G. Sillén, Acta Chem. Scand., 1950, 4, 556 CAS.
  19. G. L. Gaines Jr. and H. C. Thomas, J. Chem. Phys., 1953, 21, 714 CrossRef.
  20. M. Tsuji, H. Kaneko and Y. Tamaura, J. Chem. Soc., Faraday Trans., 1993, 89, 851 RSC.
  21. Y. Tanaka and M. Tsuji, Mater. Res. Bull., 1997, 32, 461 CrossRef CAS.
  22. R. M. Barrer and J. D. Falconer, Proc. R. Soc. London Ser. A, 1956, 236, 227.
  23. R. M. Barrer, Natural Zeolites, Occurrence, Properties and Use, Pergamon, Oxford, 1978, p. 385 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.