Crystallinity of boehmite and its effect on the phase transition temperature of alumina

(Note: The full text of this document is currently only available in the PDF Version )

Takayuki Tsukada, Hideo Segawa, Atsuo Yasumori and Kiyoshi Okada


Abstract

The effect of the crystallinity of boehmite powders on the temperatures of γ-Al2O3 formation and the θ- to α-Al2O3 transformation was investigated using boehmite powders of varying crystallite size prepared under various hydrothermal conditions. With increasing crystallite size of the boehmite powders, the specific surface area decreased and the expanded (020) d-spacing approached the reported value. Thermogravimetric (TG) profiles of more poorly crystalline boehmite indicated the presence of excess water molecules of different binding energy located on the surface or in the interlayer. The crystallite size of boehmite also showed a strong correlation with the formation temperature of γ-Al2O3 and the phase transition temperature of θ- to α-Al2O3. Since both these temperatures are increased with increasing the crystallite size of boehmite, this is an important factor in determining the conditions for obtaining γ-, θ- and α-Al2O3 from boehmite. By relating the TG weight loss to the water and OH contents in boehmite and γ-Al2O3, respectively, the crystallite size of boehmite can be related to the water content. This indicates that the γ-Al2O3 transformed from boehmite of smaller crystallite size contains larger amounts of OH groups, implying more poorly crystalline γ-Al2O3. The reported topotactic transformation of boehmite via γ- to θ-Al2O3 indicates a relationship between the crystallite size of the boehmite and that of the resulting transition alumina, which could explain the change of the phase transition temperature from θ- to α-Al2O3.


References

  1. J. H. DeBoer and B. C. Lippens, J. Catal., 1964, 3, 38 CrossRef CAS.
  2. H. Knozinger and P. Ratnasamy, Catal. Rev.-Sci. Eng., 1978, 17, 31 Search PubMed.
  3. A. B. Stiles, Catalyst Supports and Supported Catalysts, Butterworths, London, 1987 Search PubMed.
  4. F. W. Dynys and J. W. Halloran, in Ultrastructure Processing Ceramics, Glasses, and Composites, ed. L. L. Hench and D. R. Ulrich, John Wiley and Sons, New York, 1984, p. 142 Search PubMed.
  5. D. L. Clark and J. J. Lannutti, in Ultrastructure Processing Ceramics, Glasses, and Composites, ed. L. L. Hench and D. R. Ulrich, John Wiley and Sons, New York, 1984, p. 126 Search PubMed.
  6. K. Wefers and C. Misra, Oxide and Hydroxide of Aluminum, Alcoa Technical Paper No.19, Alcoa Laboratories, Pittsburgh, PA, 1987 Search PubMed.
  7. R. D. Tottenhorst and D. A. Hofmann, Clays Clay Miner., 1980, 28, 373.
  8. B. E. Yoldas, J. Am. Ceram. Soc., 1982, 65, 387 CAS.
  9. S. J. Wilson, J. Br. Ceram. Soc., 1979, 28, 281 Search PubMed.
  10. B. C. Lippens and J. H. D. Boer, Acta. Crystallogr., 1964, 17, 1312 CrossRef CAS.
  11. C. F. J. Baes and R. E. Mesmer, The Hydrolysis of Cations, John Wiley and Sons, New York, London, Sydney, Toronto, 1976 Search PubMed.
  12. T. Tsukada, T. Saito, H. Segawa, A. Yasumori and K. Okada, J. Ceram. Soc. Jpn., submitted Search PubMed.
  13. S. Castet, J. Dandurand, J. Schotte and R. Gout, Geochim. Cosmochim. Acta, 1993, 57, 4869 CAS.
  14. H. Yanagida and G. Yamaguchi, Bull. Chem. Soc. Jpn., 1964, 37, 1229 CAS.
  15. H. Yanagida, G. Yamaguchi and J. Kubota, Bull. Chem. Soc. Jpn., 1965, 38, 2194 CAS.
  16. R. Zhou and R. L. Snyder, Acta Crystallogr., Sect. B, 1991, 47, 617 CrossRef.
  17. S. Soled, J. Catal., 1983, 81, 252 CrossRef CAS.
  18. P. Burtin, J. P. Brunelle, M. Pijolat and M. Soustelle, Appl. Catal., 1987, 34, 239 Search PubMed.
  19. T. Tsuchida, R. Furuich and T. Ishii, Thermochim. Acta, 1980, 39, 103 CrossRef CAS.
  20. H. Schaper and L. L. Van Reijen, Thermochim. Acta, 1984, 77, 383 CrossRef CAS.
  21. B. E. Yoldas, J. Mater. Sci., 1976, 11, 465 CAS.
  22. M. Pijolat, M. Dauzat and M. Soustelle, Thermochim. Acta, 1987, 122, 71 CrossRef CAS.
  23. Y. Saito, T. Takei, S. Hayashi, A. Yasumori and K. Okada, J. Am. Ceram. Soc., 1998, 81, 2197 CAS.
  24. M. Kumagai and G. L. Messing, J. Am. Ceram. Soc., 1984, 67, C230 CAS.
  25. J. L. McArdle and G. L. Messing, Adv. Ceram. Mater., 1988, 3, 387 Search PubMed.
  26. R. A. Shellmann and G. L. Messing, J. Am. Ceram. Soc., 1988, 71, 317.
  27. J. L. McArdle and G. L. Messing, J. Am. Ceram. Soc., 1989, 72, 864 CAS.
  28. S. Jagota and R. Raj, J. Mater. Sci., 1992, 27, 2251 CAS.
  29. T. Horiuchi, T. Osaki, T. Sugiyama, H. Masuda, M. Horio, K. Suzuki, T. Mori and T. Sago, J. Chem. Soc., Faraday Trans., 1994, 90, 2573 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.