Electron paramagnetic resonance characterisation of silica-dispersed copper molybdate obtained by sol-gel and impregnation methods

(Note: The full text of this document is currently only available in the PDF Version )

Carmen Canevali, Franca Morazzoni, Roberto Scotti, Daniele Cauzzi, Pietro Moggi and Giovanni Predieri


Abstract

Silica-dispersed copper molybdates having different Cu:Mo and Cu:Si molar ratios were prepared both by a sol-gel route and a conventional impregnation technique. These materials, used as catalysts for the propene oxidation, were studied in order to assess whether the different preparation methods and/or different Cu:Mo and Cu:Si molar ratios affected the copper(II) coordination. Electron paramagnetic resonance spectroscopy showed that oxo/hydroxo-bridged copper(II) dimers were present in xerogel catalyst precursors and on the surface of fresh impregnated precursor materials, their amount increasing with Cu:Si molar ratio and in impregnated samples. The value of the zero field interaction is very low and decreases with increase in temperature. This means that Cu(II) centres in dimers are spaced fairly far apart and lie in a strongly distorted symmetry field which varies because of the flexible host matrix. Thermal treatment of both xerogels and impregnated samples gave silica-dispersed Cu3Mo2O9 catalysts from samples with Cu:Mo molar ratio 1:1 and silica-dispersed CuMoO4 from those with Cu:Mo 1:2. The presence of polynuclear metal compounds in the crystalline phase seems to be connected to the presence of dimeric species in the precursor. The sol-gel method is more efficient than impregnation to produce catalysts with small and homogeneous particle dimensions of the active phase, for a wide range of Cu:Si molar ratios.


References

  1. H. H. Kung, in Transition Metal Oxides: Surface Chemistry and Catalysis, Elsevier, Amsterdam, 1989 Search PubMed.
  2. M. A. Bañares, H. Hu and I. E. Wachs, J. Catal., 1994, 150, 407 CrossRef CAS.
  3. L. Owens and H. H. Kung, J. Catal., 1993, 144, 202 CrossRef CAS; P. M. Michalakos, K. Birkeland and H. H. Kung, J. Catal., 1996, 158, 349 CrossRef CAS.
  4. R. Grabowski, J. Sloczynski, K. Direk and M. Labanowska, Appl. Catal., 1987, 32, 103 Search PubMed.
  5. B. Grzybowska, A. Mazurkiewicz and J. Sloczinsky, Appl. Catal., 1985, 13, 223 Search PubMed; U. Ozkan and G. L. Schrader, J. Catal., 1985, 95, 120 CAS; S. R. G. Carrazan, C. Martin, V. Rives and R. Vidal, Appl. Catal. A, 1996, 135, 95 CrossRef CAS.
  6. M. M. Bettahar, G. Costentin, L. Savary and J. C. Lavalley, Appl. Catal. A, 1996, 145, 1 CrossRef CAS.
  7. A. Bielanski and J. Haber, in Oxygen in Catalysis, Marcel Dekker, Inc., New York, 1991, pp. 315–319 Search PubMed.
  8. L. L. Hench and J. K. West, Chem. Rev., 1990, 90, 33 CrossRef CAS.
  9. R. J. Davis and Z. Liu, Chem. Mater., 1997, 9, 2311 CrossRef CAS; L. Delattre and F. Babonneau, Chem. Mater., 1997, 9, 2385 CrossRef CAS.
  10. M. A. Cauqui and J. M. Rodriguez-Izquierdo, J. Non-Cryst. Solids, 1992, 147, 148; U. Schubert, New J. Chem., 1994, 18, 1049 Search PubMed; R. D. Gonzales, T. Lopez and R. Gomez, Catal. Today, 1997, 35, 293 CrossRef CAS.
  11. D. Cauzzi, M. Deltratti, G. Predieri, A. Tiripicchio, C. Mazzocchia and E. Tempesti, Synthesis and Methodologies in Inorganic Chemistry, ed. S. Daolio, E. Tondello and P. A. Vigato, 1996, vol. 6, pp. 218–224 Search PubMed.
  12. G. Predieri and P. Moggi, to be published.
  13. Y. Moro-oka, S. Tan, Y. Takita and A. Ozaki, Bull. Chem. Soc. Jpn., 1968, 41, 2820 CAS; R. Maggiore, S. Galvagno, J. C. J. Bart, A. Giannetto and G. Toscano, Z. Phys. Chem. Neue Folge, 1982, 132, 85 CAS.
  14. L. T. Weng, S. Y. Ma, P. Ruiz and B. Delmon, J. Mol. Catal., 1990, 61, 99 CrossRef CAS.
  15. Y.-S. Yoon, N. Fujikawa, W. Ueda, Y. Moro-oka and K.-W. Lee, Catal. Today, 1995, 24, 327 CrossRef CAS.
  16. A. M. Klonkowski, K. Koehler and C. W. Schlaepfer, J. Mater. Chem., 1993, 3, 105 RSC.
  17. A. M. Klonkowski and C. W. Schlaepfer, J. Non-Cryst. Solids, 1991, 129, 101 CAS.
  18. V. Bassetti, L. Burlamacchi and G. Martini, J. Am. Chem. Soc., 1979, 101, 5471 CrossRef CAS.
  19. J. Peisach and W. E. Blumberg, Arch. Biochem. Biophys., 1974, 165, 691 CAS.
  20. N. N. Greenwood and A. Earnshaw, in Chemistry of the Elements, Pergamon Press, Oxford, 1984, p. 541 Search PubMed.
  21. J. H. Price, J. R. Pilbrow, K. S. Murray and T. D. Smith, J. Chem. Soc. A, 1970, 968 RSC.
  22. A. Bencini and D. Gatteschi, in EPR of Exchange Coupled Systems, Springer-Verlag, Berlin, 1990, p. 180 Search PubMed; H. Yokoi and M. Chikira, J. Am. Chem. Soc., 1975, 97, 3975 Search PubMed.
  23. J. E. Wertz and J. R. Bolton, in Electron Spin Resonance, McGraw Hill, New York, 1972, p. 292 Search PubMed.
  24. A. Carrington and A. D. Mc Lachlan, in Introduction to Magnetic Resonance, Harper International Edition, New York, 1969, pp. 158–163 Search PubMed.
  25. G. Martini, J. Magn. Reson., 1974, 15, 262 CAS.
  26. U. Steiner and W. Reichelt, Acta Crystallogr., Sect. C, 1997, 1371 CAS; Powder diffraction file card No 24–55, JCPDS, International Center for Diffraction Data, Swarthmore, PA Search PubMed.
  27. S. C. Abrahams, J. L. Bernstein and P. B. Jamieson, J. Chem. Phys., 1968, 48, 2619 CAS; Powder diffraction file card No 22–242, JCPDS, International Center for Diffraction Data, Swarthmore, PA Search PubMed.
  28. T. C. Higgs, M. Helliwell, E. J. L. McInnes, F. E. Mabbs, C. J. Harding and C. D. Garner, J. Chem. Soc., Dalton Trans., 1997, 927 RSC.
  29. F. A. Cotton and G. Wilkinson, in Advanced Inorganic Chemistry, 5th edn., Wiley and Sons, New York, 1988, p. 768 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.