Intercalation route to nano-hybrids: inorganic/organic-high Tc cuprate hybrid materials

(Note: The full text of this document is currently only available in the PDF Version )

Jin-Ho Choy, Soon-Jae Kwon, Seong-Ju Hwang, Young-Il Kim and Woo Lee


Abstract

A systematic application of intercalation techniques to layered superconducting oxides enables us to open a new chapter in the development of nano-hybrids with various functions. Recently we were successful in preparing a new series of inorganic-inorganic nano-hybrids, M-X-Bi2Sr2Cam–1CumOy (M=Hg, Ag, Au; X=Br, I; m=1-3) and organic-inorganic ones, R2HgI4-Bi2Sr2Cam–1CumOy (R=organic cation). Our synthetic strategies are based on (1) HSAB (hard-soft acid-base) interactions and (2) interlayer complexation concepts. Since the iodine species in IBi2Sr2Cam–1CumOy are stabilized as I3– (soft base) with a charge transfer between host and guest, soft Lewis acids like Ag+, Au+, and Hg2+ can be further intercalated into the iodine layers inbetween the (Bi-O) double layers. On the other hand, new organic-inorganic nano-hybrids (R2HgI4-Bi2Sr2Cam–1CumOy) have also been achieved through the intercalative complex-salt formation reaction between preintercalated HgI2 molecules and R+I salts in the interlayer space of Bi2Sr2Cam–1CumOy. Compared to the pure compounds the superconducting transition temperatures of the organic-salt intercalates are little changed even with a large basal increment upon intercalation, indicating a two-dimensional nature of the high-T[thin space (1/6-em)]c superconductivity. From the viewpoint of application, the intercalation of large organic molecules provides a new synthetic route to high-T[thin space (1/6-em)]c superconducting thin-film and nano-particles by separating superconducting blocks into isolated single sheets.


References

  1. M. S. Dresselhaus(Editor), Intercalation in Layered Materials, Plenum Press, New York, 1986 Search PubMed.
  2. J. M. Wheatly, T. C. Hsu and P. W. Anderson, Nature, 1988, 333, 121 CrossRef.
  3. X.-D. Xiang, S. McKernan, W. A. Vareka, A. Zettl, J. L. Corkill, T. W. Barbee III and M. L. Cohen, Nature, 1990, 348, 145 CrossRef CAS.
  4. J. H. Choy, N. G. Park, S. J. Hwang, D. H. Kim and N. H. Hur, J. Am. Chem. Soc., 1994, 116, 11564 CrossRef CAS.
  5. J. H. Choy, S. J. Hwang and N. G. Park, J. Am. Chem. Soc., 1997, 119, 1624 CrossRef CAS.
  6. J. H. Choy, N. G. Park, Y. I. Kim, S. H. Hwang, J. S. Lee and H. I. Yoo, J. Phys. Chem., 1995, 99, 7845 CrossRef CAS.
  7. J. H. Choy, S. J. Kwon and G. S. Park, Science, 1998, 280, 1589 CrossRef CAS.
  8. J. H. Choy, N. G. Park, S. J. Hwang and Z.-G. Khim, J. Phys. Chem., 1996, 100, 3783 CrossRef CAS.
  9. J. H. Choy, S. J. Hwang and D.-K. Kim, Phys. Rev. B, 1997, 55, 5674 CrossRef CAS.
  10. J. H. Choy, D. K. Kim, S. G. Kang, D. H. Kim and S. J. Hwang, in Superconducting Materials, IITT-International, eds. J. Etourneau, J. B. Torrance and H. Yamauch, Paris, 1993, p. 335 Search PubMed.
  11. W. A. Groen, D. M. de Leeuw and G. M. Stollman, Solid State Commun., 1989, 72, 697 CrossRef CAS.
  12. A. Maeda, M. Hase, I. Tsukada, K. Noda, S. Takebayashi and K. Uchinokura, Phys. Rev. B, 1990, 41, 6418 CrossRef CAS.
  13. J. Tsuchiya, H. Endo, N. Kijima, A. Sumiyama, M. Mizuno and Y. Oguri, Jpn. J. Appl. Phys. Part 2, 1989, 28, L1918 Search PubMed.
  14. M. Di Stasio, K. A. Muller and L. Pietronero, Phys. Rev. Lett., 1990, 64, 2827 CrossRef CAS.
  15. R. Liu, M. V. Klein, P. D. Han and D. A. Payne, Phys. Rev. B, 1992, 45, 7392 CrossRef CAS.
  16. K. Yvon and M. Francois, Z. Phys. B, 1989, 76, 413 CAS.
  17. P. V. Huong and A. L. Verma, Phys. Rev. B, 1993, 48, 9869 CrossRef CAS.
  18. J. H. Choy, S. J. Hwang and W. Lee, J. Solid State Chem., in the press Search PubMed.
  19. T. Huang, M. Itoh, J. Yu, Y. Inaguma and T. Nakamura, Phys. Rev. B, 1994, 49, 9885 CrossRef and refs. listed in Table 2.
  20. X.-D. Xiang, W. A. Vareka, A. Zettl, J. L. Corkill, T. W. Barbee III, M. L. Cohen, N. Kijim and R. Gronsky, Science, 1991, 254, 1487 CAS and refs. listed in Table 2.
  21. J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry, Harper Collins College Publishers, New York, 1993 Search PubMed.
  22. J. B. Boyce, T. M. Hayes, W. Stutius and J. C. Mikkelsen. Jr., Phys. Rev. Lett., 1977, 38, 1362 CrossRef CAS.
  23. M. J. Rice and W. L. Roth, J. Solid State Chem., 1972, 4, 294 CAS.
  24. S. Geller, Science, 1967, 157, 310 CAS.
  25. A. F. Wells, Structural Inorganic Chemistry, Clarendon Press, Oxford, 1984 Search PubMed.
  26. R. Arnek and D. Poceva, Acta Chem. Scand., Ser. A, 1976, 30, 59.
  27. R. Kleiner and P. Müller, Phys. Rev. B, 1994, 49, 1327 CrossRef CAS.
  28. Q. Li, Ø. Fischer, O. Brunner, L. Antognazza, A. D. Kent and M. G. Karkut, Phys. Rev. Lett., 1990, 64, 3086 CrossRef CAS.
  29. J. M. Triscone, X. X. Xi, X. D. Wu, A. Inam, S. Vadlamannati, W. L. McLean, T. Veukatesan, R. Ramesh, D. M. Hwang, J. A. Martinez and L. Nazar, Phys. Rev. Lett., 1990, 64, 804 CrossRef CAS.
  30. D. R. Nelson, Nature, 1995, 375, 356 CAS.
  31. E. Zeldov, D. Majer, M. Konczykowski, V. B. Geshkenbein, V. M. Vinokur and H. Shtrikman, Nature, 1995, 375, 373 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.