Behaviour of the one-dimensional, inorganic polymer 1[MPS4] anions (M=Ni, Pd) in organic solutions

(Note: The full text of this document is currently only available in the PDF Version )

Julien Sayettat, Lucy M. Bull, Stéphane Jobic, Jean-Christophe P. Gabriel, Marc Fourmigué, Patrick Batail, Raymond Brec, René-Louis Inglebert and Claude Sourisseau


Abstract

The behaviour of the KMPS4 (M=Ni, Pd) salts and some solid-solution phases, KNixPd1–xPS4, when dissolved in dimethylformamide (DMF) have been studied. For KNiPS4-DMF the novel re-arranged molecular bowl-like [Ni3P3S12]3– trianion can be formed from solutions that have been heated at 323 K for 2 days and K+ exchanged by larger organic cations such as PPh4+ (tetraphenylphosphonium), TMA+ (tetramethylammonium), TEA+ (tetraethylammonium), and MEM+ (methylethylmorpholinium). This remarkable dispersion/auto-fragmentation/re-arrangement sequence extends the concept of mere excision in solution of monomeric molecular motifs from low-dimensional inorganic solids. Investigations by electrospray mass spectrometry (ESMS), 31P solution-state NMR and optical microscopy under polarized light of KNiPS4 in DMF have shown that chains of[MPS4] exist intact in freshly prepared solutions. These solutions show transient birefringence under stress. ESMS and NMR studies of KNiPS4 solutions show that the [NiPS4] chains are quickly broken down at ambient temperature and that cyclic [Ni3P3S12]3– trianions are formed. By contrast, the [PdPS4] chain remains intact at temperatures up to 323 K. This behavioural difference can be understood in terms of the Ni-S and Pd-S bond strengths. ESMS spectra of aged KNixPd1–xPS4/DMF solutions indicate that mixed metal trianions are formed, such as [Ni2PdS12]3–, [NiPd2P3S12]3– and [Ni3P3S12]3–, but no [Pd3P3S12]3– species have yet been observed.


References

  1. Electronic Properties of Inorganic Quasi-one-dimensional Compounds, ed. P. Monceau, Physics and Chemistry of Materials with Low-dimensional Structures Series B, D. Reidel, Dordrecht, Holland, 1985, parts 1 and 2 Search PubMed.
  2. Crystal Chemistry and Properties of Materials with Quasi-one- dimensional Structures, ed. J. Rouxel, Physics and Chemistry of Materials with Low-dimensional Structures Series B, D. Reidel, Dordrecht, Holland, 1986 Search PubMed.
  3. J. A. Wilson, F. J. DiSalvo and S. Mahajan, Adv. Phys., 1975, 24, 117 CAS.
  4. J. A. Wilson, Phys. Rev. B.: Condens. Matter, 1979, 19, 6456 CrossRef CAS.
  5. Charge Density Waves in Solids, ed. L. P. Gor'kov and G. Grüner, Elsevier, Amsterdam, Holland, 1989 Search PubMed.
  6. F. R. Gamble, F. J. DiSalvo, R. A. Klemm and T. H. Geballe, Science, 1970, 168, 568 CAS.
  7. Y. Ishihara and I. Nakada, Solid State Commun., 1980, 33, 385 CrossRef.
  8. L. J. de Jongh and A. R. Miedema, Adv. Phys., 1974, 23, 1 CAS.
  9. M. Steiner, J. Villain and C. G. Windsor, Adv. Phys., 1976, 25, 87 CAS.
  10. J. Rouxel, in Supramolecular Architecture, Synthetic Control in Thin Films and Solids, ed. T. Bein, ACS Symp. Ser. 499, American Chemical Society, Washington DC, 1992, p. 88 Search PubMed.
  11. J. Rouxel, Adv. Synth. React. Solids, 1994, 2, 27 Search PubMed.
  12. A. Wold, W. Kunmann, R. J. Arnott and A. Feretti, Inorg. Chem., 1964, 3, 545 CrossRef CAS.
  13. C. Fouassier, C. Delmas and P. Hagenmuller, Mater. Sci. Eng., 1977, 31, 97 Search PubMed.
  14. S. A. Sunshine, D. Kang and J. A. Ibers, J. Am. Chem. Soc., 1987, 109, 6202 CrossRef CAS.
  15. M. G. Kanatzidis and A. C. Sutorik, Prog. Inorg. Chem., 1995, 43, 151 CAS.
  16. M. G. Kanatzidis, Curr. Opin. Solid State Mater. Sci., 1997, 2, 139 CrossRef CAS.
  17. W. Bronger and P. Müller, J. Less-Comm. Met., 1984, 100, 241 Search PubMed.
  18. S.-P. Huang and M. G. Kanatzidis, Inorg. Chem., 1991, 30, 1455 CrossRef CAS.
  19. Y.-J. Lu and J. A. Ibers, Comments Inorg. Chem., 1993, 14, 229 CAS.
  20. S. S. Dhingra and R. C. Haushalter, Chem. Mater., 1994, 6, 2376 CrossRef CAS.
  21. A. J. Jacobson, in Soft Chemistry Routes to New Materials, ed. J. Rouxel, M. Tournoux and R. Brec, Trans Tech Publications Ltd, Aedermannsdorf, Switzerland, Materials Science Forum, vol. 152–153, 1994, p. 1 Search PubMed.
  22. P. Davidson, J. C. Gabriel, A. M. Levelut and P. Batail, Europhys. Lett., 1993, 21, 317 Search PubMed.
  23. (a) S. H. Elder, A. Van der Lee, R. Brec and E. Canadell, J. Solid State Chem., 1995, 116, 107 CrossRef CAS; (b) 1995117432.
  24. K. Chondroudis, M. G. Kanatzidis, J. Sayettat, S. Jobic and R. Brec, Inorg. Chem., 1997, 36, 5859 CrossRef CAS.
  25. J. Sayettat, L. M. Bull, J.-C. P. Gabriel, S. Jobic, F. Camerel, A.-M. Marie, M. Fourmigué, P. Batail, R. Brec and R.-L. Inglebert, Angew. Chem., Int. Ed. Engl., 1998, 37, 1711 CrossRef CAS.
  26. G. M. Sheldrick, SHELXTLTM version 5, Siemens Analytical X-Ray Instruments, Inc., Madison, WI.
  27. A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori and M. Camalli, J. Appl. Crystallogr., 1994, 27, 435 CrossRef.
  28. Xtal3.4 User's Manual, ed. S. R. Hall, G. S. D. King and J. M. Stewart, Universities of Western Australia, Lamb, Perth, 1995 Search PubMed.
  29. J. Rodriguez-Carjaval, Fullprof Manual, ILL Report, 1992 Search PubMed.
  30. B. Eisenmann, H. Schwerer and H. Schaefer, Mater. Res. Bull., 1983, 18, 383 CAS.
  31. (a) S. Andersson, M. Hakansson and S. Jagner, Inorg. Chim. Acta, 1993, 209, 195 CrossRef CAS; (b) S. Andersson and S. Jagner, Acta Chem. Scand. Ser. A, 1988, 42, 691; (c) 198741230; (d) 19864052; (e) S. Jagner, S. Olson and R. Stomberg, ibid., 1986, 40, 230 Search PubMed; (f) S. Andersson and S. Jagner, ibid., 1986, 40, 210 Search PubMed; (g) 198539423; (h) 198539799; (i) 198539515; (j) M. Asplund, S. Jagner and M. Nilsson, ibid., 1985, 39, 447 Search PubMed; (k) S. Andersson and S. Jagner, ibid., 1985, 39, 181 Search PubMed; (l) 198539177; (m) M. Asplund and S. Jagner, ibid., 1985, 39, 47 Search PubMed.
  32. S. Pohl, R. Lotz, W. Saak and D. Haase, Angew. Chem., Int. Ed. Engl., 1989, 28, 344 CrossRef.
  33. [Ag(Sex)]nn phases were synthesized from a DMF solution of Ag+ and Se2–x with an organic cation: M. G. Kanatzidis and S.-P. Huang, Angew. Chem., Int. Ed. Engl., 1989, 28, 1513 Search PubMed.
  34. N. Gupta, D.-K. Seo, M.-H. Whangbo, S. Jobic, J. Rouxel and R. Brec, J. Solid State Chem., 1997, 128, 181 CrossRef CAS.
  35. J. Sayettat, P. Deniard, S. Jobic, R. Brec and C. Sourisseau, in preparation.
  36. M.-H. Whangbo and R. Hoffmann, J. Am. Chem. Soc., 1978, 100, 6093 CrossRef CAS.
  37. R. Hoffmann, J. Chem. Phys., 1963, 39, 1397 CrossRef CAS.
  38. J. H. Ammeter, H.-B. Bürgi, J. Thibeault and R. Hoffmann, J. Am. Chem. Soc., 1978, 100, 3686 CrossRef CAS.
  39. KMPS4 compounds are miscible at all concentrations with DMF. Highly viscous gels (resembling modelling clay) have been obtained at concentrations as high as 2.2 moll–1(KMPS4, 6 DMF).
  40. (a) P. Davidson, J.-C. Gabriel, A.-M. Levelut and P. Batail, Adv. Mater., 1993, 5, 665 CAS; (b) J.-C. P. Gabriel, C. Sanchez and P. Davidson, J. Phys. Chem., 1996, 100, 11139 CrossRef CAS For a review, see: P. Davidson, P. Batail, J.-C. P. Gabriel, J. Livage, C. Sanchez and C. Bourgaux, Prog. Polym. Sci., 1997, 22, 913 Search PubMed.
  41. S. C. Lee and R. H. Holm, Angew. Chem., Int. Ed. Engl., 1990, 29, 840 CrossRef.
  42. The difference between the crystal and the solution can be readily determined by uncrossing the polarizers, which reveals a crystal surrounded by a particle free phase, flowing when compressed, confirming its fluid nature.
  43. G. Champetier and L. Monnerie, in Introduction à la chimie macromoléculaire, Masson, Paris, 1969, pp. 351–365 Search PubMed; S. Chandrasekhar, in Liquid Crystals, Cambridge University Press, Cambridge, 1992, pp. 69–71 Search PubMed.
  44. C. Sourisseau, R. Cavagnat, M. Fouassier, R. Brec and S. H. Elder, Chem. Phys., 1995, 195, 351 CrossRef CAS.
  45. C. Sourisseau, R. Cavagnat, M. Fouassier, J. Sayettat, S. Jobic and R. Brec, in preparation.
Click here to see how this site uses Cookies. View our privacy policy here.