New routes to transition metal nitrides: and characterization of new phases

(Note: The full text of this document is currently only available in the PDF Version )

Roger Marchand, Franck Tessier and Francis J. DiSalvo


Abstract

Transition metal nitrides form a class of materials with unique physical properties which give them varied applications, as high temperature ceramics, magnetic materials, superconductors or catalysts. They are commonly prepared by high temperature conventional processes, but alternative synthetic approaches have also been explored, more recently, which utilize moderate-temperature conditions. For example, high surface area γ-Mo2N nitride powders (fcc phase) are prepared from commercial oxide MoO3 through a topotactic transformation process. Of prime importance is the nature of the precursor, because it may yield new nitride phases unattainable by other synthetic routes. A novel promising method to nitride synthesis has been developed using sulfides as starting materials. The ammonolysis reaction has been applied first to the preparation of two binary molybdenum nitrides: Mo5N6 (filled 2H-MoS2 structure) and δ-MoN (NiAs-type structure) from MoS2, and then extended to other metals such as W, Cr or Ti, as well as molybdenum- and tantalum-based ternary systems. Fine reactive molybdenum sulfide precursor powders (Sg ≥200 m2 g–1) have been synthesized in thiocyanate melt. On the other hand, alkali metal ternary oxides offer potential as nitridation precursors. For example, a binary nitride Nb4N5 (defect NaCl-type structure) results from ammonolysis of sodium or potassium niobates whereas LiNb3O8 is transformed into a mixed valent ternary nitride LiNb3N4 (filled 2H-MoS2 structure). Another illustration of the Li+ inductive effect is given in the direct synthesis of LiMN2 from Li2MO4 (M=Mo, W). The nitrides Mo5N6, δ-MoN and Nb4N5 show superconducting behavior at T<12 K.


References

  1. L. E. Toth, Transition Metal Carbides and Nitrides, Refractory Materials, ed. J. L. Margrave, Academic Press, New York and London, 1971, vol. 7 Search PubMed.
  2. P. Ettmayer and W. Lengauer, in Encyclopedia of Inorganic Chemistry, ed. R. B. King, John Wiley & Sons, Chichester, 1994, p. 2498 Search PubMed.
  3. S. T. Oyama, in The chemistry of Transition Metal Carbides and Nitrides, ed. S. T. Oyama, Blackie A & P, Glasgow, 1996, p. 1 Search PubMed.
  4. D. A. Papaconstantopoulos and W. E. Pickett, Phys. Rev. B, 1985, 31, 7093 CrossRef CAS.
  5. S. T. Oyama, Catal. Today, 1992, 15, 179 CrossRef CAS.
  6. X. Gouin, R. Marchand, P. L'Haridon and Y. Laurent, J. Solid State Chem., 1994, 109, 175 CrossRef CAS.
  7. R. Marchand, X. Gouin, F. Tessier and Y. Laurent, Mater. Res. Soc. Symp. Proc., 1995, 368, 15 CAS.
  8. R. Marchand, X. Gouin, F. Tessier and Y. Laurent, in The Chemistry of Transition Metal Carbides and Nitrides, ed. S. T. Oyama, Blackie A & P, Glasgow, 1996, p. 252 Search PubMed.
  9. L. Volpe and M. Boudart, J. Solid State Chem., 1985, 59, 332 CrossRef CAS.
  10. L. Volpe and M. Boudart, Catal. Rev. Sci. Eng., 1985, 27, 515 Search PubMed.
  11. A. Bezinge, K. Yvon, J. Müller, W. Lengauer and P. Ettmayer, Solid State Commun., 1987, 63, 141 CrossRef CAS.
  12. F. Tessier, Thesis, Rennes, 1996.
  13. J. Milbauer, Z. Anorg. Allg. Chem., 1904, 42, 433.
  14. D. H. Kerridge and S. J. Walker, J. Inorg. Nucl. Chem., 1977, 39, 1579 CAS.
  15. D. H. Kerridge, in The Chemistry of Nonaqueous Solvents, ed. J. J. Lagowsky, Academic Press, New York, 1978, p. 269 Search PubMed.
  16. F. Tessier, R. Marchand and Y. Laurent, J. Eur. Ceram. Soc., 1997, 17, 1825 CrossRef CAS.
  17. N. V. Troitskaya and Z. G. Pinsker, Sov. Phys. Crystallogr., 1964, 8, 441 Search PubMed.
  18. F. Tessier and R. Marchand, J. Alloys Compd., 1997, 262–263, 410 CAS.
  19. P. Subramanya Herle, M. S. Hegde, N. Y. Vasanthacharya, S. Philip, M. V. Rama Rao and T. Sripathi, J. Solid State Chem., 1997, 134, 120 CrossRef.
  20. F. J. DiSalvo, G. W. Hull Jr., L. H. Schwartz, J. M. Voorhoeve and J. V. Waszczak, J. Chem. Phys., 1973, 59, 1922 CAS.
  21. (a) N. E. Brese, M. O'Keeffe, P. Rauch and F. J. DiSalvo, Acta Crystallogr., Sect C, 1991, 47, 2291 CrossRef; (b) N. E. Brese and M. O'Keeffe, in Structures and Bonding, Springer-Verlag, Berlin, 1992, p. 307 Search PubMed.
  22. J. Etourneau, J. Portier and F. Ménil, J. Alloys Compd., 1992, 188, 1 CrossRef CAS.
  23. F. J. DiSalvo, Science, 1990, 247, 649 CAS.
  24. H.-C. zur Loye, J. D. Houmes and D. S. Bem, in The Chemistry of Transition Metal Carbides and Nitrides, ed. S. T. Oyama, Blackie A & P., Glasgow, 1996, p. 154 Search PubMed.
  25. F. Tessier, R. Assabaa and R. Marchand, J. Alloys Compd., 1997, 262–263, 512 CrossRef CAS.
  26. R. Assabaa-Boultif, R. Marchand and Y. Laurent, (a)Ann. Chim. Fr., 1994, 19, 39; (b)Eur. J. Solid State Inorg. Chem., 1995, 32, 1101 Search PubMed.
  27. Th. Brokamp and H. Jacobs, J. Alloys Compd., 1992, 183, 325 CAS.
  28. S. H. Elder, L. H. Doerrer, F. J. DiSalvo, J. B. Parise, D. Guyomard and J. M. Tarascon, Chem. Mater., 1992, 4, 928 CrossRef CAS.
  29. P. Subramany Herle, M. S. Hegde, N. Y. Vasanthacharya, J. Gopalakrishnan and G. N. Subbanna, J. Solid State Chem., 1994, 112, 208 CrossRef CAS.
  30. N. Terao, J. Less-Common Met., 1971, 23, 159 Search PubMed.
  31. G. Oya and Y. Onodera, Jpn. J. Appl. Phys., 1971, 10, 1485 CAS.
  32. A. Yajima, T. Arai, R. Matsuzaki and Y. Saeki, Bull. Chem. Soc. Jpn., 1984, 57, 1582 CAS.
  33. G. Oya and Y. Onodera, J. Appl. Phys., 1974, 45, 1389 CAS.
  34. A. Fontbonne and J. C. Gilles, Rev. Int. Hautes Tempér. Réfract., 1969, 6, 181 Search PubMed.
  35. N. Terao, Jpn. J. Appl. Phys., 1971, 10, 248 CAS.
  36. D. Watanabe, O. Terasaki, A. Jostsons and J. R. Castles, J. Phys. Soc. Jpn., 1968, 25, 292 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.