Synthesis and characterisation of tin-doped iron oxides

(Note: The full text of this document is currently only available in the PDF Version )

Frank J. Berry, Colin Greaves, Örn Helgason and Julia McManus


Abstract

Rietveld structure refinement of the X-ray powder diffraction data recorded from tin-doped Fe3O4 prepared by heating metallic iron, α-iron(III) oxide and tin(IV) oxide in sealed evacuated quartz ampoules shows the tin to substitute on the octahedral sites of the inverse spinel-related structure. Tin-doped γ-Fe2O3, prepared by boiling a precipitate derived from iron(III), iron(II) and tin(II) under reflux, also adopts an inverse spinel-related structure containing tin on the octahedral sites and, compared to pure γ-Fe2O3, is stabilised with respect to conversion to α-Fe2O3. 57Fe Mössbauer spectroscopy shows the Neél temperature for γ-Fe1.9Sn0.1O3 to be between 750 and 820 K. Tin-doped α-Fe2O3 prepared by hydrothermal methods is shown by Rietveld structure refinement of the X-ray powder diffraction data to contain tin in both the substitutional and interstitial octahedral sites of the corundum-related structure.


References

  1. Ö. Helgason, H. P. Gunnlaugsson, S. Steinthorsson and S. Morup, Hyperfine Interact., 1992, 70, 981 CAS.
  2. C. Djega-Mariadassou, F. Basile, P. Foix and A. Michel, Ann. Chim., 1973, 8, 15 CAS.
  3. F. Basile, C. Djega-Mariadassou and P. Foix, Mater. Res. Bull., 1973, 8, 619 CAS.
  4. F. J. Morin, Phys. Rev., 1951, 83, 1005 CrossRef CAS.
  5. N. Uekawa, M. Watanabe, K. Kaneko and F. Mizukami, J. Chem. Soc., Faraday Trans., 1995, 91, 2161 RSC.
  6. P. B. Fabritchnyi, E. V. Lamykin, A. M. Babechkin and A. N. Nesmeianov, Solid State Commun., 1972, 11, 343 CrossRef.
  7. F. Schneider, K. Melzer, H. Mehner and G. Deke, Phys. Status Solidi A, 1977, 39, K115 CAS.
  8. M. Takano, Y. Bando, N. Nakanishi, M. Sakai and H. Okinaka, J. Solid State Chem., 1987, 68, 153 CAS.
  9. S. Music, S. Popovic, M. Metikos-Hukovic and G. Gvozdic, J. Mater. Sci. Lett., 1991, 10, 197 CAS.
  10. H. Kanai, H. Mizutani, T. Tanaka, T. Funabiki, S. Yoshida and M. Takano, J. Mater. Chem., 1992, 2, 703 RSC.
  11. P. Bonzi, L. E. Depero, F. Parmigiani, C. Perego, G. Sberveglieri and G. Quattroni, J. Mater. Res., 1994, 9, 1250 CAS.
  12. Y. Liu, W. Zhu, M. S. Tse and S. Y. Shen, J. Mater. Sci. Lett., 1995, 14, 1185 CAS.
  13. J. Rodriguez-Carajal, ‘FULLPROF’ v.2.6.1' (ILL France), 1994based on the original code by R. A. Young, J. Appl. Crystallogr., 1981, 14, 149 Search PubMed.
  14. Ö. Helgason, H. P. Gunnlaugsson, K. Jónsson and S. Steinthorsson, Hyperfine Interact., 1994, 91, 595 CAS.
  15. B. A. Wechsler, D. H. Lindsley and C. T. Prewitt, Am. Mineral., 1984, 69, 754 CAS.
  16. R. D. Shannon, Acta Crystallogr., Sect. A, 1976, 32, 751 CrossRef.
  17. F. J. Berry, Ö. Helgason, K. Jónsson and S. J. Skinner, J. Solid State Chem., 1996, 122, 353 CrossRef CAS.
  18. L. Häggstrom, H. Annersten, T. Ericson, R. Wäppling, W. Karner and S. Bjarman, Hyperfine Interact., 1978, 5, 201 CAS.
  19. F. J. Berry, Ö. Helgason, K. Jónsson and S. J. Skinner, Proceedings of the International Conference on the Applications of the Mossbauer Effect, ed. I. Ortalli, SIF, Bologna, 1996, p. 59 Search PubMed.
  20. W. H. Bauer and A. A. Khan, Acta Crystallogr., Sect. B, 1971, 27, 2133 CrossRef CAS.
  21. C. Greaves, J. Solid State Chem., 1983, 49, 325 CAS.
  22. F. J. Berry, C. Greaves, J. G. McManus, M. Mortimer and G. Oates, J. Solid State Chem., 1997, 130, 272 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.