Ultra-rapid laser irradiation as a preparative technique in solid state chemistry

(Note: The full text of this document is currently only available in the PDF Version )

R. J. D. Tilley


Abstract

This paper describes the use of laser irradiation to induce chemical reactions in solids. Single pulses from excimer and YAG lasers which had a wavelength in the near ultraviolet, a pulse length duration of about 10–9 s and a total energy of 1 J cm–2 were employed. The materials irradiated were the metal oxides TiO2, TiO2/ZnO, NiO, ZnO, Nb2O5, MoO3, In2O3, WO3, SrTiO3 and mica. These were in the form of particles and films laid on substrates of glass or mica except for mica alone which was in the form of a cleaved foil. NiO, ZnO, In2O3, SrTiO3 and mica did not react, but some melting took place in the case of ZnO. Thin films of WO3 and MoO3 on mica reacted to form a yellow-brown sharply delineated product phase. The materials TiO2, TiO2/ZnO, Nb2O5, MoO3 and WO3 darkened instantaneously to produce a sharply delineated mark which was sometimes accompanied by melting. This coloration is not normal photochromism and is believed to be due to reduction.


References

  1. J. F. Ready, Effects of High Power Laser Radiation, Academic Press, New York, 1971 Search PubMed.
  2. Laser Induced Damage in Optical Materials, National Bureau of Standards Special Publication 764, National Bureau of Standards, Washington, 1985 Search PubMed.
  3. H. M. Phillips and R. A. Sauerbrey, Opt. Eng., 1993, 32, 2424 Search PubMed.
  4. M. Geller, D. E. Altman and T. A. de Temple, Appl. Phys. Lett., 1967, 11, 221 Search PubMed.
  5. C. H. Chen and M. P. McCann, Opt. Commun., 1986, 49, 34 Search PubMed.
  6. V. Bichevin and H. Kaambre, Phys. Status Solidi B, 1994, 186, 57 Search PubMed.
  7. T. le Mercier, M. Quarton, M.-F. Fontaine, C. F. Hague and J.-M. Mariot, J. Appl. Phys., 1994, 76, 3341 Search PubMed.
  8. Y. Zhao, Z. C. Feng, Y. Liang and H. W. Sheng, Appl. Phys. Lett., 1997, 71, 2227 Search PubMed.
  9. E. E. M. Tilley, 1997, thesis, University of Cambridge.
  10. G. Marci, L. Palmisano and R. J. D. Tilley, in preparation.
  11. C. Martin, I. Martin, V. Rives, G. Solana, V. Loddo, L. Palmisano and A. Sclafani, J. Mater. Sci., 1997, 32, 6039 Search PubMed.
  12. R. I. Bickley, T. Gonzales-Carreño, J. S. Lees, L. Palmisano and R. J. D. Tilley, J. Solid State Chem., 1991, 92, 178 Search PubMed.
  13. P. H. Dickinson and C. L. E. Higgitt, personal communication.
  14. L. A. Bursill and B. G. Hyde, Prog. Solid State Chem., 1972, 7, 177 Search PubMed.
  15. B. G. Hyde and S. Andersson, Inorganic Crystal Structures, Wiley-Interscience, Brisbane, 1989, pp. 98–104 Search PubMed.
  16. D. J. Smith, L. A. Bursill and G. J. Wood, J. Solid State Chem., 1983, 50, 51 Search PubMed.
  17. R. J. D. Tilley, in preparation.
  18. J. Choisnet, M. Hervieu, D. Groult and B. Raveau, Mater. Res. Bull., 1977, 12, 621 Search PubMed.
  19. F. Studer and B. Raveau, Phys. Status Solidi A, 1978, 49, 189 Search PubMed.
  20. J. M. Chailleux, D. Groult and B. Raveau, Ann. Chim. Fr., 1978, 3, 251 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.