Detection of arsenosugars from kelp extracts via IC-electrospray ionization-MS-MS and IC membrane hydride generation ICP-MS

(Note: The full text of this document is currently only available in the PDF Version )

Patricia A. Gallagher, Xinyi Wei, Jody A. Shoemaker, Carol A. Brockhoff and John T. Creed


Abstract

The selectivity and the ability to obtain structural information from detection schemes used in arsenic speciation research are growing analytical requirements driven by the growing number of arsenicals extracted from natural products and the need to minimize misidentification in exposure assessments. Three arsenosugars were extracted from ribbon kelp utilizing accelerated solvent extraction. The three arsenosugars were separated from other arsenicals with near baseline resolution using a PRP-X100 column and a 20 mM (NH4)2CO3 mobile phase at a pH of 9 with IC-ICP-MS detection. Utilizing these chromatographic conditions, the molecular weight was determined for each arsenosugar utilizing ion chromatography-electrospray ionization-mass spectrometry (IC-ESI-MS) in the positive ion mode. The molecular weight and retention times for the three arsenicals are 328 u (4.6 min), 482 u (8.2 min) and 392 u (14.2 min). The IC-ESI-MS-MS spectra from each of the arsenosugars were compared to the spectra reported in the literature, which were obtained via direct infusion of standard materials. All three MS-MS spectra contain m/z 237, 195 and 97, which are fragments of the base dimethylarsinylriboside common to all the arsenosugars. Adequate sensitivity for each arsenical was achieved using a 6.1 ng and a 22 ng injection for IC-ESI-MS and IC-ESI-MS-MS, respectively. Given the unavailability of standards, the arsenosugar distribution was determined via relative chromatographic areas using IC-ICP-MS. The IC-ICP-MS indicated the presence of an arsenic heteroatom within the same retention windows in which the arsenosugars were detected via IC-ESI-MS. The IC-ESI-MS and IC-ESI-MS-MS detection scheme provided structural information but at reduced sensitivity. In an attempt to preserve sensitivity and improve selectivity of the IC-ICP-MS, an on-line membrane hydride generation detection scheme was evaluated. The hydride system indicated that the three unknown peaks (arsenosugars) were not hydride active, thereby simplifying the chromatographic resolution needed to quantitate the more toxicologically important arsenicals, such as MMA, DMA, As(III) and As(V), while minimizing the potential for misidentification.


References

  1. M. M. Frey and M. A. Edwards, J. Am. Water Works Assoc., 1997, 89, 105 Search PubMed.
  2. R. W. Dabeka, A. D. McKenzie, G. M. A. Lacroix, C. Cleroux, S. Bowe, R. A. Graham, H. B. S. Conacher and P. Verdier, J. AOAC Int., 1993, 76, 14 CAS.
  3. E. L. Gunderson, J. AOAC Int., 1995, 78, 910 CAS.
  4. E. L. Gunderson, J. AOAC Int., 1995, 78, 1353 CAS.
  5. J. S. Edmonds and K. A. Francesconi, Mar. Pollut. Bull., 1993, 26, 665 CrossRef CAS.
  6. S. Branch, L. Ebdon and P. O'Neill, J. Anal. At. Spectrom., 1994, 9, 33 RSC.
  7. J. Alberti, R. Rubio and G. Rauret, Fresenius' J. Anal. Chem., 1995, 351, 420 CrossRef CAS.
  8. D. Velez, N. Ybanez and R. Montoro, J. Agric. Food Chem., 1995, 43, 1289 CrossRef CAS.
  9. D. Velez, N. Ybanez and R. Montoro, J. Agric. Food Chem., 1996, 44, 859 CrossRef CAS.
  10. T. Kaise, H. Yamauchi, T. Hirayamas and S. Fukuis, Appl. Organometall. Chem., 1988, 2, 339 CrossRef CAS.
  11. S. X. C. Le, W. R. Cullen and K. J. Reimer, Environ. Sci. Technol., 1994, 28, 1598 CAS.
  12. W. R. Chappell and C. O. Abernathy, in Arsenic Exposure and Health, ed. W. R. Chappell, C. O. Abernathy and C. R. Cothern, Science and Technology Letters, Northwood, Middlesex, UK, 1994, ch. 2, pp. 21–29 Search PubMed.
  13. G. Lunde, J. Sci. Food Agric., 1973, 24, 1021 CAS.
  14. Toxicological Profile for Arsenic, ATSDR/TP-88/02, prepared by Life Systems Inc. for Agency for Toxic Substances and Disease Registry U.S. Public Health Service, in collaboration with US EPA, March 1998, Oak Ridge National Laboratory, TN, USA, 1989 Search PubMed.
  15. H. Hasegawa, Y. Sohrin, M. Matsui, M. Hojo and M. Kawashima, Anal. Chem., 1994, 66, 3247 CrossRef CAS.
  16. S. J. Haswell, P. O'Neill and K. C. C. Bancroft, Talanta, 1985, 32, 69 CrossRef CAS.
  17. C. Hwang and S. Jiang, Anal. Chim. Acta, 1994, 289, 205 CrossRef CAS.
  18. M. L. Magnuson, J. T. Creed and C. A. Brockhoff, J. Anal. At. Spectrom., 1996, 11, 893 RSC.
  19. P. Thomas and K. Sniatecki, J. Anal. At. Spectrom., 1995, 10, 615 RSC.
  20. X. C. Le and M. Ma, Anal. Chem., 1998, 70, 1926 CrossRef CAS.
  21. M. Ma and X. C. Le, Clin. Chem., 1998, 44, 539.
  22. X. Le, W. R. Cullen and K. J. Reimer, Clin. Chem., 1994, 40, 617 CAS.
  23. G. K. C. Low, G. E. Batley and S. J. Buchanan, Chromatographia, 1986, 22, 292 CAS.
  24. E. H. Larsen, G. Pritzi and S. H. Hansen, J. Anal. At. Spectrom., 1993, 8, 557 RSC.
  25. D. Heitkemper, J. Creed, J. Caruso and F. L. Fricke, J. Anal. At. Spectrom., 1989, 4, 279 RSC.
  26. G. M. Momplaisir, J. S. Blais, M. Quinteiro and W. D. Marshall, J. Agric. Food Chem., 1991, 39, 1448 CrossRef CAS.
  27. E. A. Crecelius, Environ. Health Perspect., 1977, 19, 147 CAS.
  28. R. Cornelis and J. De Kimpe, J. Anal. At. Spectrom., 1994, 9, 945 RSC.
  29. B. S. Sheppard, J. A. Caruso, D. T. Heitkemper and K. A. Wolnik, Analyst, 1992, 117, 971 RSC.
  30. J. P. Buchet, J. Pauwels and R. Lauwerys, Environ. Res., 1994, 66, 44 CrossRef CAS.
  31. K. D. Arbinda, R. Chakraborty, M. L. Cervera and M. de la Guardia, Mikrochim. Acta, 1996, 122, 209 CAS.
  32. W. C. Story, J. A. Caruso, D. T. Heitkemper and L. Perkins, J. Chromatogr. Sci., 1992, 30, 427 CAS.
  33. J. Alberti, R. Rubio and G. Rauret, Fresenius' J. Anal. Chem., 1995, 351, 420 CrossRef CAS.
  34. D. Beauchemim, K. W. M. Siu, J. W. McLaren and S. S. Berman, J. Anal. At. Spectrom., 1989, 4, 285 RSC.
  35. E. H. Larsen, G. Pritzi and S. H. Hansen, J. Anal. At. Spectrom., 1993, 8, 1075 RSC.
  36. M. A. Lopez, M. M. Gomez, M. A. Palacios and C. Camara, Fresenius' J. Anal. Chem., 1993, 346, 643 CrossRef CAS.
  37. M. Van Holderbeke, Y. Zhao, F. Vanhaecke, L. Moens, R. Dams and P. Sandra, J. Anal. At. Spectrom., 1999, 14, 229 RSC.
  38. B. Michalke and P. Schramel, Electrophoresis, 1998, 19, 2220 CAS.
  39. S. A. Pergantis, K. A. Francesconi, W. Groessler and J. E. Thomas-Oates, Anal. Chem., 1997, 69, 4931 CrossRef CAS.
  40. K. W. M. Siu, G. J. Gardner and S. S. Berman, Rapid Commun. Mass Spectrom., 1988, 2, 69 CAS.
  41. J. J. Corr and E. H. Larsen, J. Anal. At. Spectrom., 1996, 11, 1215 RSC.
  42. S. A. Pergantis, W. Winnik and D. Betowski, J. Anal. At. Spectrom., 1997, 12, 531 RSC.
  43. K. W. M. Siu, R. Guevremont, J. C. Y. LeBlanc, G. J. Gardner and S. S. Berman, J. Chromatogr., 1991, 554, 27 CrossRef CAS.
  44. X. C. Le, M. Ma and N. A. Wong, Anal. Chem., 1996, 68, 4501 CrossRef CAS.
  45. R. H. Atallah and D. A. Kalman, Talanta, 1991, 38, 167 CrossRef CAS.
  46. J. S. Edmonds and K. A. Francesconi, Nature, 1981, 289, 602 CrossRef CAS.
  47. P. A. Gallagher, J. W. McKiernan, X. Wei, C. A. Brockhoff, J. A. Shoemaker, J. T. Creed and J. A. Caruso, European Winter Conference on Plasma Spectrochemistry, Pau, France, January 10–15, 1999, C7 Search PubMed.
  48. X. C. Le, W. R. Cullen and K. J. Reimer, Talanta, 1994, 41, 495ss CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.