Infrared laser ablation and atomic emission spectrometry of stainless steel at high temperatures

(Note: The full text of this document is currently only available in the PDF Version )

S. Palanco, L. M. Cabalín, D. Romero and J. J. Laserna


Abstract

Laser-induced breakdown spectrometry has been evaluated at high temperatures for stainless steel samples. A Q-switched Nd:YAG laser operating at 1064 nm was used to create a microplasma on an AISI 304L stainless steel sample placed inside a laboratory oven. The steel sample was 51.5 cm away from the focusing lens. The temperature of the samples ranged from 25 to 1200[thin space (1/6-em)]°C. The plasma light was collected by means of a fiber optic bundle, spectrally resolved and then detected by a CCD camera. The effects of sample temperature in the formation of a laser-induced plasma have been studied in terms of its spectral features as well as the morphology of the ablated craters in air at atmospheric pressure. A noticeable dependence of signal emission intensity on sample temperature has been found. Depth profiling of stainless steel samples for several temperature conditions was performed. Results have revealed changes in the superficial composition at temperatures above 600[thin space (1/6-em)]°C due to the formation of a slag layer of variable thickness, mainly composed of chromium, iron and manganese oxides.


References

  1. T. R. Dulski, Anal. Chem., 1993, 65, 29R CAS.
  2. G. B. Kenney, U.S. Patent, 4,578,022.
  3. R. Jowitt and I. D. Abell, U.S. Patent, 4,598,577.
  4. L. J. Radziemsky, T. R. Loore and D. A. Cremers, in Optical And Remote Sensing, ed. D. K. Killinger and A. Mooradian, Springer-Verlag, New York, USA, 1983 Search PubMed.
  5. R. S. Adrian, in Some Industrial Uses of Laser-Induced Plasmas in Industrial Applications of Lasers, ed. H. Koebner, John Wiley, New York, USA, 1984 Search PubMed.
  6. D. A. Cremers, Appl. Spectrosc., 1987, 41, 572 CAS.
  7. K. Y. Yamamoto, D. A. Cremers, M. J. Ferris and L. E. Foster, Appl. Spectrosc., 1996, 50, 222 CAS.
  8. R. Sattmann, V. Sturm and R. Noll, J. Phys. D: Appl. Phys., 1995, 28, 2181 CrossRef CAS.
  9. A. González, M. Ortiz and J. Campos, Appl. Spectrosc., 1995, 49, 1632 CAS.
  10. C. Aragón, J. A. Aguilera and J. Campos, Appl. Spectrosc., 1993, 47, 606 CAS.
  11. L. M. Cabalín, D. Romero, J. M. Baena and J. J. Laserna, Surf. Interf. Anal., in the press Search PubMed.
  12. L. M. Cabalín, D. Romero, J. M. Baena and J. J. Laserna, Fresenius' J. Anal. Chem., in the press Search PubMed.
  13. J. M. Vadillo, C. C. Garcia, S. Palanco and J. J. Laserna, J. Anal. At. Spectrom., 1998, 13, 793 RSC.
  14. C. J. Lorenzen, C. Carlhoff, U. Hahn and M. Jogwich, J. Anal. At. Spectrom., 1992, 7, 1029 RSC.
  15. M. Sabsabi and P. Cielo, Appl. Spectrosc., 1995, 49, 499 CAS.
  16. C. Chaléard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour and C. Geertsen, J. Anal. At. Spectrom., 1997, 12, 183 RSC.
  17. A. M. Prokhorov, V. I. Konov, I. Ursu and I. N. Mihailescu, Laser Heating of Metals, Adam Hilger, Bristol, UK, 1990 Search PubMed.
  18. R. A. Seban, J. Heat Transfer, 1965, 173 CAS.
  19. J. Apraiz, Tratamientos Térmicos de los Aceros, Editorial Dossat, S. A., Madrid, Spain, 1985 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.