Determination of (ultra)trace amounts of lead in biological materials by on-line coupling flow injection microcolumn separation and preconcentration to electrothermal atomic absorption spectrometry using a macrocycle immobilized silica gel sorbent

(Note: The full text of this document is currently only available in the PDF Version )

Xiu-Ping Yan, Michael Sperling and Bernhard Welz


Abstract

A fully automated procedure was developed for the determination of (ultra)trace lead in biological materials by on-line coupling flow injection (FI) microcolumn separation and preconcentration with electrothermal atomic absorption spectrometry (ETAAS) using a macrocycle immobilized silica gel sorbent (Pb-02). The analyte was selectively and efficiently collected on a conically shaped column (50 µl) packed with Pb-02 over a wide range of sample acidity (0.08-≥3 mol l–1 HNO3). Quantitative elution of the retained analyte from the column was achieved with 46 µl of 0.03 mol l–1 ethylenediamine tetraacetic acid (EDTA) solution at pH 10.5. The eluate was driven with an air flow into the graphite tube preheated to 110[thin space (1/6-em)]°C. No precise timing was needed during analyte elution and eluate introduction. When 0.15 mol l–1 HNO3 was used as the wash medium and the residual solution was removed from the column and connecting tubes by air before elution, the only potential interferents were found to be Ba(II), Sr(II) and K(I) due to their competition for the cavity of the macrocyclic compound because their ionic radii are similar to that of Pb(II). Nevertheless, these potential interferences were eliminated or minimized by a proper increase of eluent volume and/or EDTA concentration. Under the optimized conditions, the tolerated concentrations of Ba(II), Sr(II) and K(I) were at least 10, 100 and 5000 mg l–1 in the digest, respectively. With a sample loading rate of 3 ml min–1 and a 20-s preconcentration time, an enhancement factor of 23 and a sampling frequency of 23 h–1 with a collection efficiency of 70% were obtained. The detection limit (3s) was found to be 2 ng l–1. The relative standard deviation (n=9) was 2.9% at the 500 ng l–1 Pb level. The results for a number of standard reference materials (rice flour, blood and urine) demonstrated the applicability of the proposed method to the analysis of biological materials with simple aqueous standards for calibration.


References

  1. B. Welz and M. Sperling, Atomic Absorption Spectrometry, Wiley-VCH, Weinheim, Germany, 3rd edn; 1999 Search PubMed.
  2. D. T. Miller, D. C. Paschal, E. W. Gunter, P. E. Stroud and J. D'Angelo, Analyst, 1987, 112, 1701 RSC.
  3. J. A. Navarro, V. A. Granadillo, O. E. Parra and R. A. Romero, J. Anal. At. Spectrom., 1989, 4, 401 RSC.
  4. W. Slavin, D. C. Manning and G. R. Carnick, At. Spectrosc., 1981, 2, 137 CAS.
  5. Z.-L. Fang, Flow Injection Separation and Preconcentration, VCH, Weinheim, Germany, 1993 Search PubMed.
  6. B. Welz, Microchim. J., 1992, 45, 163 Search PubMed.
  7. Z.-L. Fang, Flow Injection Atomic Absorption Spectrometry, John Wiley, Chichester, UK, 1995 Search PubMed.
  8. Z.-L. Fang, Spectrochim. Acta, Part B, 1998, 53, 1371 CrossRef.
  9. J. L. Burguera and M. Burguera, Analyst, 1998, 123, 561 RSC.
  10. Z.-L. Fang, M. Sperling and B. Welz, J. Anal. At. Spectrom., 1990, 5, 639 RSC.
  11. R.-L. Ma, W. Van Mol and F. Adams, Anal. Chim. Acta, 1994, 293, 251 CrossRef CAS.
  12. B. Welz, M. Sperling and X.-J. Sun, Fresenius' J. Anal. Chem., 1993, 346, 550 CrossRef CAS.
  13. M. Sperling, X.-F. Yin and B. Welz, J. Anal. At. Spectrom., 1991, 6, 615 RSC.
  14. M. Sperling, X.-F. Yin and B. Welz, Spectrochim. Acta, Part B, 1991, 46, 1789 CrossRef.
  15. M. Sperling, X.-F. Yin and B. Welz, Analyst, 1992, 117, 629 RSC.
  16. B. Welz, X.-F. Yin and M. Sperling, Anal. Chim. Acta, 1992, 261, 477 CrossRef CAS.
  17. V. Porta, O. Abollino, E. Mentasti and C. Sarzanini, J. Anal. At. Spectrom., 1991, 6, 119 RSC.
  18. Z.-S. Liu and S.-D. Huang, Anal. Chim. Acta, 1993, 281, 185 CrossRef CAS.
  19. L. C. Azeredo, R. E. Sturgeon and A. J. Curtius, Spectrochim. Acta, Part B, 1993, 48, 91 CrossRef.
  20. K. Backstrom and L. G. Danielsson, Anal. Chem., 1988, 60, 1354 CrossRef.
  21. K. Backstrom and L. G. Danielsson, Anal. Chim. Acta, 1990, 232, 301 CrossRef.
  22. S.-L. Lin, Q.-H. Zhao and G.-L. Yu, Fenxi Kexue Xuebao, 1994, 10(1), 24 Search PubMed.
  23. G.-H. Tao and Z.-L. Fang, Spectrochim. Acta, Part B, 1995, 50, 1747 CrossRef.
  24. Z.-L. Fang and L.-P. Dong, J. Anal. At. Spectrom., 1992, 7, 439 RSC.
  25. L.-P. Dong and Z.-L. Fang, Fenxi Shiyanshi, 1992, 11(6), 9 Search PubMed.
  26. H.-W. Chen, S.-K. Xu and Z.-L. Fang, J. Anal. At. Spectrom., 1995, 10, 533 RSC.
  27. E. Beinrohr, M. Rapta, M. L. Lee, P. Tschopel and G. Tölg, Mikrochim. Acta, 1993, 110, 1 CAS.
  28. M. Sperling, X.-P. Yan and B. Welz, Spectrochim. Acta, Part B, 1996, 51, 1891 CrossRef.
  29. X.-P. Yan and F. Adams, J. Anal. At. Spectrom., 1997, 12, 459 RSC.
  30. X.-P. Yan, W. Van Mol and F. Adams, Lab. Rob. Autom., 1997, 9, 191 CrossRef CAS.
  31. X.-P. Yan, W. Van Mol and F. Adams, Analyst, 1996, 121, 1061 RSC.
  32. E. Ivanova, X.-P. Yan, W. Van Mol and F. Adams, Analyst, 1997, 122, 667 RSC.
  33. E. Ivanova, X.-P. Yan, W. Van Mol and F. Adams, Anal. Chim. Acta, 1997, 354, 7 CrossRef CAS.
  34. M. Sperling, X.-P. Yan and B. Welz, Spectrochim. Acta, Part B, 1996, 51, 1875 CrossRef.
  35. K. Kimura and T. Shono, J. Liq. Chromatogr., 1982, 5(Suppl. 2), 223 CAS.
  36. CRC Handbook of Chemistry and Physics, ed. D. R. Lide, CRC Press, Boca Raton, FL, USA, 74 edn., 1993–1994, pp. 12–8, 9 Search PubMed.
  37. X.-P. Yan, M. Sperling and B. Welz, Anal. Chem., in the press Search PubMed.
  38. D. L. Tsalev, Atomic Absorption Spectrometry in Occupational and Environmental Health Practice, vol. II, CRC Press, Boca Raton, FL, USA, 1984 Search PubMed.
  39. G. Venkatesh Iyengar, Elemental Analysis of Biological System, Vol. I, CRC Press, Boca Raton, FL, 1989, p. 3 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.