Furnace-fusion system for the direct determination of cadmium in biological samples by inductively coupled plasma atomic emission spectrometry using tungsten boat furnace–sample cuvette technique

(Note: The full text of this document is currently only available in the PDF Version )

Yasuaki Okamoto


Abstract

A solid sampling technique using an electrothermal vaporisation device is described. To a small sample cuvette made of tungsten, a solid mixture of a biological sample and diammonium hydrogenphosphate powder as a fusion flux was added. The cuvette was superposed on a tungsten boat furnace, then tetramethylammonium hydroxide solution was injected as a sample decomposition reagent. By resistance heating of the tungsten boat furnace, the cuvette temperature was maintained at a wet-digestion temperature sufficient to decompose the solid sample. After the on-furnace digestion was complete, the temperature was successively elevated up to maximum to generate analyte vapour. The transient cloud of vapour was introduced into the plasma. Since any solid samples could be decomposed to ash completely on the cuvette, the sensitivity was the same as that of aqueous standards. The method was successfully applied to the direct determination of cadmium in biological certified reference materials.


References

  1. B. L. Sharp, J. Anal. At. Spectrom., 1988, 3, 939 RSC.
  2. B. L. Sharp, J. Anal. At. Spectrom., 1988, 3, 613 RSC.
  3. L. Blain, E. D. Salin and D. W. Boomer, J. Anal. At. Spectrom., 1989, 4, 721 RSC.
  4. V. Karanassios, G. Horlick and M. Abdullah, Spectrochim. Acta, Part B, 1990, 45, 105 CrossRef.
  5. K. M. Trivedi, S. W. Brewer Jr. and R. D. Sacks, Appl. Spectrosc., 1990, 44, 367 CAS.
  6. I. Atsuya, T. Itoh and T. Kurotaki, Spectrochim. Acta, Part B, 1991, 46, 103 CrossRef.
  7. V. Karanassios, J. M. Ren and E. D. Salin, J. Anal. At. Spectrom., 1991, 6, 527 RSC.
  8. T. Kántor and Gy. Záray, Fresenius' J. Anal. Chem., 1992, 342, 927 CrossRef CAS.
  9. M. Umemoto, K. Hayashi and H. Haraguchi, Anal. Chem., 1992, 64, 257 CrossRef CAS.
  10. V. Karanassios and T. J. Wood, Appl. Spectrosc., 1999, 53, 197 CAS.
  11. C. D. Skinner, M. Cazagou, J. Blaise and E. D. Salin, Appl. Spectrosc., 1999, 53, 191 CAS.
  12. H. R. Badiei and V. Karanassios, J. Anal. At. Spectrom., 1999, 14, 603 RSC.
  13. P. Verrept, R. Dams and U. Kurfürst, Fresenius' J. Anal. Chem., 1993, 346, 1035 CrossRef CAS.
  14. L. Moens, P. Verrept, S. Boonen, F. Vanhaecke and R. Dams, Spectrochim. Acta, Part B, 1995, 50, 463 CrossRef.
  15. A. Golloch, M. Haveresch-Kock and F. Plantikow-Voβgátter, Spectrochim. Acta, Part B, 1995, 50, 501 CrossRef.
  16. K. Fujiwara, Y. Okamoto, M. Ohno and T. Kumamaru, Anal. Sci., 1995, 11, 829 CAS.
  17. Y. Okamoto, H. Kakigi and T. Kumamaru, Anal. Sci., 1993, 9, 105 CAS.
  18. Y. Okamoto, K. Sugawa and T. Kumamaru, J. Anal. At. Spectrom., 1994, 9, 89 RSC.
  19. Y. Okamoto, H. Murata, M. Yamamoto and T. Kumamaru, Anal. Chim. Acta, 1990, 239, 129 CrossRef CAS.
  20. J. C. Eames and J. P. Matousek, Anal. Chem., 1980, 52, 1248 CrossRef CAS.
  21. H. Minami, Q. Zhang, H. Itoh and I. Atsuya, Microchem. J., 1994, 49, 126 CrossRef CAS.
  22. S. Boonen, P. Verrept, L. J. Moens and R. F. J. Dams, J. Anal. At. Spectrom., 1993, 8, 711 RSC.
  23. The Merck Index, ed. S. Budavari, M. J. O'Neil, A. Smith and P. E. Heckelman, 11th edn., Merck, West Point, PA, USA, 1989 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.