Steve J. Hill, John B. Dawson, W. John Price, Ian L. Shuttler, Clare M. M. Smith and Julian F. Tyson
1 Atomic absorption spectrometry 1.1 Flame atomization 1.1.1 Sample introduction 1.1.1.1 Transport/nebulization 1.1.1.2 Tube-in-flame/atom trapping techniques 1.1.2 Interference studies 1.1.3 Sample introduction by flow injection 1.1.4 Sample pretreatment 1.1.5 Chromatographic detection 1.2 Electrothermal atomization 1.2.1 Atomizer design and surface modification 1.2.1.1 Graphite atomizers 1.2.1.2 Metal atomizers and metallic coatings 1.2.2 Sample introduction 1.2.2.1 Slurry and solid sampling 1.2.2.2 Gas sampling 1.2.2.3 Coupled techniques and preconcentration 1.2.2.4 Electrodeposition 1.2.3 Fundamental processes 1.2.4 Interferences 1.2.4.1 Spectral interferences 1.2.4.2 Chemical modifiers—general 1.2.4.3 Chemical modifiers—palladium 1.2.4.4 Other chemical modifiers 1.2.5 Developments in technique 1.3 Chemical vapour generation 1.3.1 Hydride generation 1.3.1.1 General studies of fundamentals, techniques and instrumentation 1.3.1.2 Determination of individual elements 1.3.2 Mercury by cold vapour generation 1.3.3 Volatile organic compound generation and metal vapour separation 1.4 Spectrometers 1.4.1 Light sources 1.4.2 Continuum source and multi-element AAS 1.4.3 Background correction 1.4.4 Detectors 1.5 Chemometrics and computerization 1.5.1 Calibration 1.5.2 Interference effects 1.5.3 Optimization of conditions 1.5.4 Validation of methodology 2 Atomic fluorescence spectrometry 2.1 Discharge-excited atomic fluorescence 2.2 Laser-excited atomic fluorescence 3 Laser-based spectroscopy 4 References