Determination of lead in tap water by ICP-AES with flow-injection on-line adsorption preconcentration using a knotted reactor and ultrasonic nebulization

(Note: The full text of this document is currently only available in the PDF Version )

J. A. Salonia, R. G. Wuilloud, J. A. Gáquez, R. A. Olsina and L. D. Martinez


Abstract

An on-line lead preconcentration and determination system implemented with inductively coupled plasma atomic emission spectrometry (ICP-AES) combined with a flow injection (FI) method with ultrasonic nebulization (USN) was studied. The lead was retained as the lead-diethyldithiocarbamate complex at pH 9.5. The lead complex was eluted from the knotted reactor (KR) with 4.0 mol l–1 hydrochloric acid. A total enhancement factor of 140 was obtained with respect to ICP-AES using pneumatic nebulization ( 14.8 for USN and 9.5 for KR). The detection limit for the preconcentration of 10 ml of aqueous solution was 0.2 ng ml–1. The precision for ten replicate determinations at the 20 µg l–1 lead level was 2.7% relative standard deviation, calculated with the peak heights obtained. The calibration graph using the preconcentration system for lead was linear with a correlation coefficient of 0.9993 at levels near the detection limits up to at least 100 ng ml–1. The method was successfully applied to the determination of lead in tap water samples.


References

  1. H. Seiler, A. Sigel and H. Sigel, Handbook on Metals in Clinical and Analytical Chemistry, Marcel Dekker, New York, 1994 Search PubMed.
  2. V. Iyengar and J. Wolttlez, Clin. Chem., 1988, 34, 474.
  3. A. Packer, M. Giné, C. Miranda and B. Dos Reis, J. Anal. At. Spectrom., 1997, 12, 563 RSC.
  4. H. Sawatari, E. Fujimori and H. Haraguchi, Anal. Sci., 1995, 11, 369 CAS.
  5. S. Imai, Y. Kubo, A. Yonetani, N. Ogawa and Y. Kikuchi, J. Anal. At. Spectrom., 1998, 13, 1199 RSC.
  6. M. Ikeda, J. Nishibe, S. Mamada and R. Trujino, Anal. Chim. Acta, 1981, 125, 109 CrossRef CAS.
  7. M. Valdés-Hevia y Temprano, B. Aizpún Fernández, M. Fernández de la Campa and A. Sanz-Medel, Anal. Chim. Acta, 1993, 283, 175 CrossRef CAS.
  8. J. Posta, A. Alimonti, F. Petrucci and S. Caroli, Anal. Chim. Acta, 1996, 325, 185 CrossRef CAS.
  9. B. Fairman and A. Sanz-Medel, Fresenius' J. Anal. Chem., 1996, 355, 757 CAS.
  10. P. Galli and N. Oddo, Microchem. J., 1992, 46, 327 CrossRef CAS.
  11. D.-A. Sun, J. Waters and T. Mawhinney, J. Anal. At. Spectrom., 1997, 12, 675 RSC.
  12. M. Hoenig, H. Baeten, S. Vanhentenrijk, G. Ploegaerts and T. Bertholet, Analusis, 1997, 25, 13 CAS.
  13. L. Vuckova and S. Arpadjan, Talanta, 1996, 43, 479 CrossRef CAS.
  14. S. Arpadjan, L. Vuckova and E. Kostadinova, Analyst, 1997, 122, 243 RSC.
  15. Z. Fang, J. Rika and E. Hansen, Anal. Chim. Acta, 1984, 164, 23 CrossRef CAS.
  16. M. Sperling, X. Yan and B. Welz, Spectrochim. Acta, Part B, 1996, 51, 1891 CrossRef.
  17. Z. Fang, M. Sperling and B. Welz, J. Anal. At. Spectrom., 1991, 6, 301 RSC.
  18. H. Chen, S. Xu and Z. Fang, Anal. Chim. Acta, 1994, 298, 167 CrossRef CAS.
  19. S. Nielsen and E. Hansen, Anal. Chim. Acta, 1998, 366, 163 CrossRef CAS.
  20. E. Ivanova and F. Adams, Fresenius' J. Anal. Chem., 1998, 361, 445 CrossRef CAS.
  21. E. Ivanova, X.-P. Yan, W. van Mol and F. Adams, Analyst, 1997, 122, 667 RSC.
  22. E. Ivanova, K. Benkhedda and F. Adams, J. Anal. At. Spectrom., 1998, 13, 527 RSC.
  23. B. Welz, J. Anal. At. Spectrom., 1998, 13, 413 RSC.
  24. T. Nakahara, Spectrochim. Acta Rev., 1991, 14, 95 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.