Development of a direct current gas sampling glow discharge ionization source for the time-of-flight mass spectrometer

(Note: The full text of this document is currently only available in the PDF Version )

John P. Guzowski, Jr., Jose A. C. Broekaert, Steven J. Ray and Gary M. Hieftje


Abstract

A direct current, reduced-pressure, gas sampling glow discharge (GSGD) ionization source has been developed and interfaced to an orthogonally extracted time-of-flight mass spectrometer for the purpose of generating both atomic and molecular fragmentation mass spectra. The discharge is contained within the first vacuum stage of the differentially pumped interface of the mass spectrometer. The source is mechanically and logistically simple to construct, operate, and maintain. Switching between the atomic and molecular modes of operation is achieved by altering the discharge gas composition, the operating pressure, and the current. Helium was used to generate atomic mass spectra, whereas molecular spectra were produced by use of argon. Gas flow rates were less than 1 l min–1 for each mode of ionization. This report focuses primarily upon the atomic (elemental) analytical capabilities of the GSGD interface. Atomic detection limits are in the range of 20-90 pg s–1 (as the halogen) for analytes introduced into the system with an exponential dilution device, and with boxcar averagers employed for data collection. Precision is better than 0.4% relative standard deviation (RSD) for measurement of the 79Br+/81Br+ isotope ratio (presented to the source as bromoform vapor) over a period of 2.5 h. A variety of chlorinated hydrocarbons were introduced into the discharge via a flow cell, and it was possible to differentiate (i.e., speciate) the compounds based upon their 35Cl+/12C+ elemental ratios with a correlation coefficient (R) of 0.996.


References

  1. B. Chapman, Glow Discharge Processes: Sputtering and Plasma Etching, John Wiley and Sons, New York, 1980 Search PubMed.
  2. N. Jakubowski, D. Stuewer and G. Toelg, Spectrochim. Acta, Part B, 1991, 46, 155 CrossRef.
  3. R. Pereiro, T. K. Starn and G. M. Hieftje, Appl. Spectrosc., 1995, 49, 616 CAS.
  4. T. K. Starn, R. Pereiro and G. M. Hieftje, Appl. Spectrosc., 1993, 47, 1555.
  5. L. Puig and R. Sacks, Appl. Spectrosc., 1989, 43, 801 CAS.
  6. K. C. Ng, A. H. Ali and J. D. Winefordner, Spectrochim. Acta, Part B, 1991, 46, 309 CrossRef.
  7. S. K. M. A. Chan, Spectrochim. Acta, Part B, 1987, 42, 591 CrossRef.
  8. J. W. Carnahan and J. A. Caruso, Anal. Chim. Acta, 1982, 36, 261 CrossRef CAS.
  9. B. W. Pack, J. A. C. Broekaert, J. P. Guzowski and G. M. Hieftje, Anal. Chem., 1998, 70, 3957 CrossRef CAS.
  10. K. E. Jarvis, A. L. Gray and R. S. Houk, Handbook of Inductively Coupled Plasma Mass Spectrometry, Chapman and Hall, New York, NY, 1992 Search PubMed.
  11. R. C. Weast, Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 59th edn, 1978 Search PubMed.
  12. R. K. Marcus, Glow Discharge Spectroscopies, Plenum Press, New York, NY, 1993 Search PubMed.
  13. R. L. Smith, D. Serxner and K. R. Hess, Anal. Chem., 1989, 61, 1103 CrossRef CAS.
  14. H. Schuler and L. Reinebeck, Naturforsch., 1950, 5a, 657 Search PubMed.
  15. H. Schuler, Spectrochim. Acta, 1950, 4, 85 CAS.
  16. H. Schuler and L. Reinebeck, Spectrochim. Acta, 1954, 6, 288 CrossRef CAS.
  17. S. A. McLuckey, G. L. Glish, K. G. Asano and B. C. Grant, Anal. Chem., 1988, 60, 2220 CrossRef CAS.
  18. J. F. Holland, C. G. Enke, J. Allison, J. T. Stults, J. D. Pinkston, B. Newcome and J. T. Watson, Anal. Chem., 1983, 55, 997A CAS.
  19. D. P. Myers, G. Li, P. P. Mahoney and G. M. Hieftje, J. Am. Soc. Mass Spectrom., 1995, 6, 411 CrossRef.
  20. P. P. Mahoney, J. P. Guzowski, S. J. Ray and G. M. Hieftje, Appl. Spectrosc., 1997, 51, 1464 CAS.
  21. P. P. Mahoney, G. Li and G. M. Hieftje, J. Anal. At. Spectrom., 1996, 11, 401 RSC.
  22. P. P. Mahoney, S. J. Ray and G. M. Hieftje, Appl. Spectrosc., 1997, 51, 16A CrossRef.
  23. D. P. Myers, G. Li, P. Yang and G. M. Hieftje, J. Am. Soc. Mass Spectrom., 1994, 5, 1008 CrossRef CAS.
  24. W. J. Moore, Basic Physical Chemistry, Prentice Hall, Englewood Cliffs, NJ, 1983 Search PubMed.
  25. E. L. Inman, E. Voigtman and J. D. Winefordner, Appl. Spectrosc., 1982, 36, 99 CAS.
  26. J. A. Fowlis and R. P. W. Scott, J. Chromatogr., 1963, 11, 1 CrossRef.
  27. N. A. Lange, Handbook of Chemistry, Handbook Publishers, Sandusky, OH, 9th edn., 1956 Search PubMed.
  28. D. P. Myers, G. Li, P. P. Mahoney and G. M. Hieftje, J. Am. Soc. Mass Spectrom., 1995, 6, 400 CrossRef.
  29. D. P. Myers and G. M. Hieftje, Microchem. J., 1993, 48, 259 CrossRef CAS.
  30. K. C. Smyth, B. L. Bentz, C. G. Bruhn and W. W. Harrison, J. Am. Chem. Soc., 1979, 101, 797 CrossRef CAS.
  31. A. Ben-amar, G. Erez, S. Fastig and R. Shuker, Appl. Opt., 1984, 23, 4529 CAS.
  32. M. Klemp, L. Puig, K. Trivedi and R. Sacks, J. Chromatogr. Science, 1992, 30, 136 Search PubMed.
  33. J. A. C. Broekaert, J. Anal. At. Spectrom., 1987, 2, 537 RSC.
  34. J. D. Ingle and S. R. Crouch, Spectrochemical Analysis, Prentice Hall, Englewood Cliffs, NJ, 1988 Search PubMed.
  35. J. J. Sullivan and B. D. Quimby, J. Chromatogr., 1989, 12, 282 CAS.
  36. Element-specific Chromatographic Detection by Atomic Emission Spectroscopy, ed. P. C. Uden, ACS Symposium Series 479, American Chemical Society, Washington, DC, 1992, vol. 479, p. 350 Search PubMed.
  37. B. Munson, Anal. Chem., 1977, 19, 772A.
  38. G. P. Arsenault, J. Am. Chem. Soc., 1972, 94, 8241 CrossRef CAS.
  39. F. Hatch and B. Munson, Anal. Chem., 1977, 49, 169 CrossRef CAS.
  40. D. F. Hunt and J. F. Ryan, Anal. Chem., 1972, 44, 1306 CrossRef CAS.
  41. F. H. Field, P. Hamlet and W. F. Libby, J. Am. Chem. Soc., 1967, 89, 6035 CrossRef CAS.
  42. E. Stenhagen, S. Abrahamsson and F. W. McLafferty, Atlas of Mass Spectral Data, Interscience, New York, 1969 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.