Determination of nickel in water samples by isotope dilution inductively coupled plasma mass spectrometry with sample introduction by carbonyl vapor generation

(Note: The full text of this document is currently only available in the PDF Version )

Chang J. Park and Seong A. Yim


Abstract

Nickel was determined in natural water samples by inductively coupled plasma mass spectrometry (ICP-MS) with sample introduction by on-line carbonyl vapor generation. The isotope dilution method was used for quantification with 60Ni and 62Ni as the major and minor isotopes. With sample introduction by the common pneumatic nebulization, the two isotopes may suffer from spectral interferences arising from molecular ions such as CaO, ArMg and Na2O. In order to obtain accurate results free from spectral interferences, nickel in the water samples was reduced with sodium borohydride to its elemental form, and the mixed solution of sample and sodium borohydride subsequently met a stream of 10% CO gas to form the volatile nickel carbonyl. The generated carbonyl vapor was directed by a stream of argon carrier gas into the ICP after separation in a liquid-gas separator made of a polytetrafluoroethylene membrane tube. Optimum conditions for carbonyl generation were investigated. The analyte transport efficiency of the carbonyl generation method was estimated to be >50%. Good agreement was achieved with the certified values in the analysis of two water reference materials, SLRS-3 riverine water and CASS-3 sea-water. The uncertainty of the analytical results was estimated to be 4.56% for CASS-3 and 1.64% for SLRS-3 with the coverage factor k=2.


References

  1. B. L. Sharp, J. Anal. At. Spectrom., 1988, 3, 613 RSC.
  2. H. Vanhoe, J. Goosens, L. Moens and R. Dams, J. Anal. At. Spectrom., 1994, 9, 177 RSC.
  3. G. R. Gilson, D. J. Douglas, J. E. Fulford, K. W. Halligan and S. D. Tanner, Anal. Chem., 1988, 60, 1472 CrossRef.
  4. E. S. Beary, P. J. Paulsen and J. D. Fassett, J. Anal. At. Spectrom., 1994, 9, 1363 RSC.
  5. C. J. Park and J. K. Suh, J. Anal. At. Spectrom., 1997, 12, 573 RSC.
  6. D. Beauchemin, J. W. McLaren, A. P. Mykytiuk and S. S. Berman, Anal. Chem., 1987, 59, 778 CrossRef CAS.
  7. M. A. Vaughan and G. Horlick, J. Anal. At. Spectrom., 1989, 4, 45 RSC.
  8. A. T. Townsend, K. A. Miller, S. McLean and S. Aldous, J. Anal. At. Spectrom., 1998, 13, 1213 RSC.
  9. C. Sariego Muniz, J. M. Marchante-Gayon, J. I. Garcia Alonso and A. Sanz-Medel, J. Anal. At. Spectrom., 1999, 14, 193 RSC.
  10. I. Rodushkin and T. Ruth, J. Anal. At. Spectrom., 1997, 12, 1181 RSC.
  11. X. Wang, M. Viczian, A. Lasztiny and R. Barnes, J. Anal. At. Spectrom., 1988, 3, 821 RSC.
  12. M. R. Cave and K. A. Green, J. Anal. At. Spectrom., 1989, 4, 223 RSC.
  13. G. P. Russ, J. M. Bazan and A. R. Date, Anal. Chem., 1987, 59, 984 CrossRef.
  14. T. Wilke, H. Wildner and G. Wunsch, J. Anal. At. Spectrom., 1997, 9, 1083 RSC.
  15. J. P. Valles Mota, M. R. Fernandez de la Campa, J. I. Garcia Alonso and A. Sanz-Medel, J. Anal. At. Spectrom., 1999, 14, 113 RSC.
  16. R. E. Sturgeon, J. Liu, V. J. Boyko and V. T. Luong, Anal. Chem., 1996, 68, 1883 CrossRef CAS.
  17. A. Yamamoto, Organotransition Metal Chemistry, Wiley, New York, 1986, p. 131 Search PubMed.
  18. D. S. Lee, Anal. Chem., 1982, 54, 1182 CAS.
  19. R. L. Jr. Watters, K. R. Eberhardt, E. S. Beary and J. D. Fassett, Metrologia, 1997, 34, 87 Search PubMed.
  20. I. Papadakis, P. D. P. Taylor and P. De Bievre, Metrologia, 1998, 35, 715 Search PubMed.
  21. Quantifying Uncertainty in Analytical Measurement, EURACHEM, London, 1995 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.