Determination of mercury in biological samples using organic compounds as matrix modifiers by inductively coupled plasma mass spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

Cao Shuqin, Chen Hangting and Zeng Xianjin


Abstract

A method was developed for the determination of total mercury in biological samples. The effects of aqueous ammonia, ethylenediamine and triethanolamine on Hg signal intensity by inductively coupled plasma mass spectrometry has been evaluated and the possible mechanisms discussed. It has been proved that the signal intensity of Hg significantly increases with adding, in the presence of small amounts of aqueous ammonia, ethylenediamine or triethanolamine. The normalized intensity (the signal intensity ratio with amine and without amine) of Hg increases as the concentration of aqueous ammonia, ethylenediamine or triethanolamine increases, but the degree of enhancement of aqueous ammonia was smaller than that of ethylenediamine and triethanolamine. The normalized intensity of Hg with aqueous ammonia, ethylenediamine and triethanolamine decreases as the nebulizer flow rate increases, but decreasing degree of aqueous ammonia was smaller than that of ethylenediamine and triethanolamine. The higher the RF powers the higher the normalized intensity of Hg at the same nebulizer flow rate. The addition of aqueous ammonia, ethylenediamine and triethanolamine into analytical solutions significantly improved the transport efficiency of Hg. The detection limit of Hg is improved about ten times by the addition of ethylenediamine or triethanolamine under the optimum experimental parameters. The method has been used to determine mercury in biological standard reference materials (SRM). The analytical results are very close to the certified values and the determined values for similar samples.


References

  1. R. G. Godden and P. B. Stockwell, J. Anal. At. Spectrom., 1989, 4, 301 RSC.
  2. E. Bulska, W. Kandler, P. Paslawski and A. Hulanicki, Mikrochim. Acta, 1995, 119, 137 CAS.
  3. P. Ganada Rudner, A. Garcia de Torres and J. M. Gano Pavon, J. Anal. At. Spectrom., 1993, 8, 705 RSC.
  4. D. Beauchemin, K. W. M. Siu and S. S. Berman, Anal. Chem., 1988, 60, 2587 CrossRef CAS.
  5. M. J. Campbell, G. Vermeir, R. Dams and P. Quevauviller, J. Anal. At. Spectrom., 1992, 7, 617 RSC.
  6. A. Stroh and U. Vollkopf, J. Anal. At. Spectrom., 1993, 8, 35 RSC.
  7. B. Passariello, M. Barbaro, S. Quaresima, A. Casciello and A. Marabini, Microchem. J., 1996, 54, 348 CrossRef CAS.
  8. J. Yoshinaga and M. Morita, J. Anal. At. Spectrom., 1997, 12, 417 RSC.
  9. D. W. Boomer and M. J. Powell, Anal. Chem., 1987, 59, 2810 CrossRef CAS.
  10. H. P. Longerich, J. Anal. At. Spectrom., 1989, 4, 665 RSC.
  11. P. Allain, L. Jaunault, Y. Mauras, J.-M. Mermet and T. Delaporte, Anal. Chem., 1991, 63, 1497 CrossRef CAS.
  12. D. Beauchemin, K. W. M. Siu, J. W. Mclaren and S. S. Berman, J. Anal. At. Spectrom., 1989, 4, 285 RSC.
  13. E. H. Larsen and S. Sturup, J. Anal. At. Spectrom., 1994, 9, 1099 RSC.
  14. I. Llorente, M. Gomez and C. Camara, Spectrochim. Acta, Part B, 1997, 52, 1825 CrossRef.
  15. S. C. K. Shum, S. K. Johnson, H. Pang and R. S. Houk, Appl. Spectrosc., 1993, 47, 575 CAS.
  16. R. M. Olivas, C. R. Quetel and O. F. X. Donard, J. Anal. At. Spectrom., 1995, 10, 865 RSC.
  17. G. S. Zhuang, Y. S. Wang, M. G. Tan, M. Zhi, W. Q. Pan and Y. D. Cheng, in Biological Trace Element Research, ed. G. N. Schrauzer, Humana Press, Clifton, NJ, USA, 1990, p. 729 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.