Determination of erbium in nuclear fuels by isotope dilution thermal ionization mass spectrometry and glow discharge mass spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

Frédéric Chartier, Michel Aubert, Murielle Salmon, Michel Tabarant and Bich Hang Tran


Abstract

A thermal ionization mass spectrometer (TIMS) and a laboratory-built glow discharge mass spectrometer (GDMS) have been employed for the determination of the isotopic composition of erbium and its concentration, with respect to uranium, in nuclear fuel samples before irradiation. First, the GDMS results on erbium isotopic composition in erbium metal and erbium oxide samples have been compared with those obtained from TIMS measurements. Then, the isotopic composition of uranium and erbium has been measured by TIMS after dissolution of inactive erbium-doped molybdenum-uranium fuel samples. The atomic 166Er:238U ratio has also been determined with the double spike isotope dilution method. A 167Er:233U spike solution has been prepared and calibrated for this determination. However, to avoid matrix effects in TIMS analyses, it has first been necessary to perform chemical separations to isolate U and Er from the high quantities of molybdenum and iron present in the liquid samples. The glow discharge mass spectrometer has been used for the analyses of the same samples. For the evaluation of this technique, the isotopic compositions of U and Er have been measured directly on the solid samples and the atomic 166Er:238U ratio has been determined by a calibration procedure with home-made standards. Results are compared in terms of accuracy and precision with the analyses performed by TIMS, used as the reference technique.


References

  1. J. R. De Laeter, Mass Spectrom. Rev., 1994, 13, 3 CAS.
  2. K. G. Heumann, S. Eisenhut, S. Gallus, E. H. Hebeda, R. Nusko, A. Vengosh and T. Walczyk, Analyst, 1995, 120, 1291 RSC.
  3. J. D. Fasset and P. J. Paulsen, Anal. Chem., 1989, 61, 643A CrossRef CAS.
  4. K. G. Heumann, Mass Spectrom. Rev., 1992, 11, 41 CAS.
  5. P. De Bièvre, Fresenius' J. Anal. Chem., 1990, 337, 766 CrossRef CAS.
  6. R. L. Watters, Jr., K. R. Eberhardt, E. S. Beary and J. D. Fasset, Metrologia, 1997, 34, 87 Search PubMed.
  7. F. Chartier, M. Aubert and M. Pilier, Fresenius' J. Anal. Chem., 1999, 364, 320 CrossRef CAS.
  8. R. L. Walker, J. A. Carter and D. H. Smith, Anal. Lett., 1981, 14, 1063.
  9. D. Poupard and B. Journiaux, Radiochim. Acta, 1990, 49, 25 CAS.
  10. J. I. Garcia Alonso, Anal. Chim. Acta, 1995, 312, 57 CrossRef.
  11. J. I. Garcia Alonso, F. Sena, P. Arbore, M. Betti and L. Koch, J. Anal. At. Spectrom., 1995, 10, 381 RSC.
  12. L. R. Riciputi, D. C. Duckworth, C. M. Barshick and D. H. Smith, Int. J. Mass Spectrom. Ion Processes, 1995, 146/147, 55 CrossRef.
  13. F. Chartier and M. Tabarant, J. Anal. At. Spectrom., 1997, 12, 1187 RSC.
  14. D. C. Duckworth, C. M. Barshick, D. A. Bostick and D. H. Smith, Appl. Spectrosc., 1993, 47, 243 CAS.
  15. M. Betti, G. Rasmussen and L. Koch, Fresenius' J. Anal. Chem., 1996, 355, 808 CAS.
  16. D. L. Donohue and M. Petck, Anal. Chem., 1991, 63, 740 CrossRef CAS.
  17. F. W. Aston, Proc. Roy. Soc. Ser. A, 1934, A146, 46 CAS.
  18. A. J. Dempster, Phys. Rev., 1938, 53, 727 CrossRef CAS.
  19. R. J. Hayden, D. C. Hess and M. G. Inghram, Phys. Rev., 1950, 77, 299 CrossRef CAS.
  20. W. T. Leland, Phys. Rev., 1950, 77, 634 CrossRef CAS.
  21. P. Holliger and C. Devillers, Earth Planet. Sci. Lett., 1981, 52, 76 CrossRef CAS.
  22. T. L. Chang, M. T. Zhao, W. J. Li, J. Wang and Q. Y. Qian, Int. J. Mass Spectrom., 1998, 177, 131 CrossRef CAS.
  23. H. Hidaka, A. Masuda, I. Fujii and H. Shimizu, Geochem. J., 1988, 22, 47 CAS.
  24. T. L. Chang and D. S. Gao, Chin. Chem. Lett., 1994, 5, 353 CAS.
  25. P. De Bièvre and P. D. P. Taylor, Int. J. Mass Spectrom. Ion Processes, 1993, 123, 149 CrossRef CAS.
  26. K. Habfast, Int. J. Mass Spectrom. Ion Phys., 1983, 51, 165 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.