Thermochemical processes and ion transport in inductively coupled plasma mass spectrometry: theoretical description and experimental confirmation

(Note: The full text of this document is currently only available in the PDF Version )

Alexandr A. Pupyshev, Vladimir N. Muzgin and Anna K. Lutsak


Abstract

Equilibrium thermodynamic modeling has been used to study thermochemical processes in the inductively coupled plasma (ICP). A thermodynamic model for the central ICP channel has been developed, which takes into account all realistic initial plasma compositions and all possible components at the equilibrium. The accuracy of the model was confirmed by a good agreement between the experimental and calculated values for the electron concentrations in the ICP analytical zone. Degrees of ionization for 75 elements in the temperature range from 6000 to 9000 K were calculated at each 1000 K. A relation has been developed for describing the mass discrimination function of registered ions in a mass spectrometer with the ICP (ICP-MS). Using the experimental detection limits of elements in the ICP-MS and calculated partial pressures of their ions in the ICP, similar well-defined discrimination functions were obtained for many Ar ICP-MS spectrometers of different producers and for He ICP-MS. This confirms the accuracy and validity of using the equilibrium model in the central ICP channel and allows the adjustment of the calibration of ICP-MS spectrometers in multi-component semi-quantitative analysis. The series of calculations have shown significant matrix ion contributions in the total ion current in the ICP. This has been confirmed by the experimental data and indicates that the temperature in the central ICP channel is usually less than 7000 K. The new model can be used to determine the total ion current and average ion mass at the interface entrance. This is necessary for quantitatively analyzing the processes of ion loss during their transport in the ion beam.


References

  1. T. I. Gerasimov, M. A. Kartashova and S. Ja. Petrov, in High Frequency Inductively Coupled Discharge in Emission Spectroscopic Analysis, Chimia, Leningrad, Russia, 1987, pp. 12–41 Search PubMed.
  2. S. Ja. Petrov, in Physical Aspects of Atomic Emission Spectroscopy, Institut of Physics AN LitSSR, Vil'nyus, Lithuania, 1988, pp. 34–47 Search PubMed.
  3. A. Belaseras and E. Nashlenas, in Physical Aspects of Atomic Emission Spectroscopy, Institut of Physics AN LitSSR, Vil'nyus, Lithuania, 1988, pp. 48–68 Search PubMed.
  4. V. M. Goldfarb and H. V. Goldfarb, Spectrochim. Acta, Part B, 1985, 40, 177 CrossRef.
  5. S. H. Paik and F. Pfender, ICP Information Newsl., 1993, 18, 574 Search PubMed.
  6. J. A. M. van der Mullen, I. J. M. M. Raaijmakers, A. C. A. P. van Lammeren, D. C. Schram, B. van der Sijde and H. J. W. Schenkelaars, Spectrochim. Acta, Part B, 1987, 42, 1039 CrossRef.
  7. M. Cai, A. Montaser and J. Mostaghimi, Appl. Spectrosc., 1995, 49, 1390 CAS.
  8. Yu. S. Sukach, in High Frequency Inductively Coupled Discharge in Emission Spectroscopic Analysis, Chimia, Leningrad, Russia, 1987, pp. 41–45 Search PubMed.
  9. J. Mostaghimi, P. Prouls, M. I. Boulos and R. M. Barnes, Spectrochim. Acta, Part B, 1985, 40, 153 CrossRef.
  10. I. J. M. M. Raaijmakers, P. W. J. M. Boumans, B. van der Sijde and D. C. Schram, Spectrochim. Acta, Part B, 1983, 38, 697 CrossRef.
  11. J. A. M. van der Mullen, S. Nowak, A. C. A. P. van Lammeren, D. C. Schram and B. van der Sijde, Spectrochim. Acta, Part B, 1988, 43, 317 CrossRef.
  12. S. Nowak, J. A. M. van der Mullen and D. C. Schram, Spectrochim. Acta, Part B, 1988, 43, 1235 CrossRef.
  13. S. Nowak, J. A. M. van der Mullen, B. van der Sijde and D. C. Schram, J. Quant. Spectrosc. Radiat. Transfer, 1989, 41, 177 CrossRef CAS.
  14. A. L. Gray, Spectrochim. Acta, Part B, 1986, 41, 151 CrossRef.
  15. R. S. Houk, Anal. Chem., 1986, 58, 97A CAS.
  16. J. A. Olivares and R. S. Houk, Anal. Chem., 1986, 58, 20 CrossRef CAS.
  17. G. M. Hieftje, G. D. Rayson and J. W. Olesik, Spectrochim. Acta, Part B, 1985, 40, 167 CrossRef.
  18. G. G. Glavin, ICP Information Newsl., 1992, 17, 807 Search PubMed.
  19. N. A. Vatolin, G. K. Moiseev and B. G. Trusov, Thermodynamic Modeling in High Temperature Inorganic Systems, Metallurgia, Moskwa, Russia, 1994 Search PubMed.
  20. A. A. Pupyshev, Using Thermodynamic Principles for Describing, Studying and Controlling Thermodynamic Processes in the Atomization and Excitation Sources of Spectra, Dissertation of Doktor Chemical Science, Ekaterinburg, Russia, 1994 Search PubMed.
  21. A. A. Pupyshev, A. K. Lutsak and V. N. Muzgin, J. Anal. Chem. Russia (Transl. of Zh. Anal. Khim.), 1998, 53, 627 Search PubMed.
  22. I. K. Karpov, Physical-chemical Modeling with Computers in Geochemie, Nauka, Novosibirsk, Russia, 1981 Search PubMed.
  23. G. Eriksson and E. Rosen, Chem. Scr., 1973, 4, 193 Search PubMed.
  24. HSC Chemistry For Windows, Version 1.10, Outokumpu Research, Finland, 1993.
  25. A. G. Turnball, CALPHAD, 1983, 7, 137 CrossRef.
  26. A. A. Pupyshev, V. N. Muzgin, N. I. Moskalenko and Yu. S. Shalkauskas, J. Anal. Chem. Russia (Transl. of Zh. Anal. Khim.), 1990, 45, 1641 Search PubMed.
  27. A. A. Pupyshev, V. N. Muzgin, N. L. Vasil'eva, T. K. Kostenko and E. K. Mel'nikova, J. Anal. Chem. Russia (Transl. of Zh. Anal. Khim.), 1992, 47, 1008 Search PubMed.
  28. M. Huang, S. A. Lehn, E. J. Andrews and G. M. Hieftje, Spectrochim. Acta, Part B, 1997, 52, 1173 CrossRef.
  29. P. A. Lidin, M. M. Andreeva and V. V. Molochko, The Handbook of Inorganic Chemie, Constants of Inorganic substances, Chimija, Moskwa, Russia, 1987 Search PubMed.
  30. The Guide to Techniques and Applications of Atomic Spectroscopy, Perkin-Elmer, Norwalk, CT, USA, 1995 Search PubMed.
  31. The Guide to Techniques and Applications of Atomic Spectroscopy, Perkin-Elmer, Norwalk, CT, USA, 1997 Search PubMed.
  32. Interface Perkin-Elmer, Perkin-Elmer, CT, USA, 1996, N.8, p. 5 Search PubMed.
  33. Detections Limits for Water Analysis with Spectromass-ICP, Spectro, Kleve, Germany, 1997 Search PubMed.
  34. Typical Detection Limits for Ultra-Mass ICP-MS, At Work N.8., Varian Australia Pty Ltd., Mulgrave, Victoria, Australia, 1996 Search PubMed.
  35. S. H. Nam, H. Zhang, M. Cai, J.-S. Lim and A. Montaser, Fresenius J. Anal. Chem., 1996, 355, 510 CAS.
  36. H. Zhang, S. H. Nam, M. Cai, J.-S. Lim and A. Montaser, Appl. Spectrosc., 1996, 50, 427 CAS.
  37. H. Uchida and T. J. Ito, J. Anal. At. Spectrom., 1997, 12, 913 RSC.
  38. Maria Montes Bayon, J. Ignacio Garcia Alonso and A. J. Sanz-Medel, J. Anal. At. Spectrom., 1998, 13, 1027 RSC.
  39. A. A. Pupyshev and A. K. Lutsak, J. Anal. Chem. Russia (Transl. of Zh. Anal. Khim.), 1998, 53, 987 Search PubMed.
  40. D. J. Douglas and J. B. French, J. Anal. At. Spectrom., 1988, 3, 743 RSC.
  41. H. Niu and R. S. Houk, Spectrochim. Acta, Part B, 1996, 51, 779 CrossRef.
  42. S. D. Tanner, Spectrochim. Acta, Part B, 1992, 47, 809 CrossRef.
  43. Y. Chen and P. B. Farnsworth, Spectrochim. Acta, Part B, 1997, 52, 231 CrossRef.
  44. X. Chen and R. S. Houk, Spectrochim. Acta, Part B, 1996, 51, 41 CrossRef.
  45. S. D. Tanner, D. J. Douglas and J. B. French, Appl. Spectrosc., 1994, 48, 1373 CAS.
  46. S. D. Tanner, L. M. Cousins and D. J. Douglas, Appl. Spectrosc., 1994, 48, 1347 CAS.
  47. D. M. Chambers, J. Poehlman and P. Yang, Spectrochim. Acta, Part B, 1991, 46, 741 CrossRef.
  48. G. R. Gillson, D. J. Douglas, J. E. Fulford, K. W. Halligan and S. D. Tanner, Anal. Chem., 1988, 60, 1472 CrossRef.
  49. N. Furuta, Spectrochim. Acta, Part B, 1985, 40, 1013 CrossRef.
  50. N. N. Sesi and G. M. Hieftje, Spectrochim. Acta, Part B, 1996, 52, 1601 CrossRef.
  51. Inductively Coupled Plasma Mass Spectrometry, ed. A. Montaser, Wiley-VCH, New-York, USA, 1998, p. 659.
  52. S.-H. Nam, W. L. R. Masamba and A. Montaser, Spectrochim. Acta, Part B, 1994, 49, 1325 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.