Application of double-focusing sector field ICP mass spectrometry with shielded torch using different nebulizers for ultratrace and precise isotope analysis of long-lived radionuclides

(Note: The full text of this document is currently only available in the PDF Version )

J. Sabine Becker and Hans-Joachim Dietze


Abstract

The capability of double-focusing sector field ICP-MS with a plasma-shielded torch using different nebulizers (a Meinhard nebulizer with a Scott-type spray chamber with a solution uptake rate of 1 ml min–1; a MicroMist microconcentric nebulizer used with a minicyclonic spray chamber with a solution uptake rate of 0.085 ml min–1; an ultrasonic nebulizer with a solution uptake rate of 2 ml min–1; and a direct injection high-efficiency nebulizer with a solution uptake rate of 0.085 ml min–1) for the introduction of radioactive sample solutions into the ICP was investigated. The total amount of analyte for each long-lived radionuclide (226Ra, 230Th, 237Np, 238U, 239Pu and 241Am; concentration of each was 1 ng l–1 in the aqueous solution) using different nebulizers was 5 pg for the Meinhard nebulizer, 0.4 pg for the MicroMist microconcentric nebulizer and 10 pg for the ultrasonic nebulizer. The application of the shielded torch yielded an increase in sensitivity for all these nebulizers of up to a factor of 5 compared with the original configuration without a shielded torch. Sensitivities of about 2000 MHz ppm–1 were measured for the radionuclides investigated (except for 226Ra) using the MicroMist microconcentric nebulizer with a shielded torch. The detection limits were in the sub-pg l–1 range and the precision ranged from 1 to 2% RSD (n=5) for the 1 ng l–1 concentration level (0.4 pg sample size). A further increase in sensitivity for long-lived radionuclides of nearly one order of magnitude in comparison with the MicroMist microconcentric nebulizer was observed using ultrasonic nebulization, but the amount of analyte required was significantly higher (by a factor of 25). In contrast, the direct injection high-efficiency nebulizer (DIHEN) in double-focusing sector field ICP-MS (DF-ICP-MS) with a shielded torch resulted in a decrease in sensitivity in comparison with the unshielded torch because of a higher water load due to the direct injection of aqueous solution into the plasma. At low solution uptake rates (down to several µl min–1), the uranium solutions were analyzed by DIHEN-ICP-MS using a double-focusing sector field instrument with higher sensitivity than quadrupole-based ICP-MS. Flow injection was used for sample introduction to measure small sample volumes of radioactive waste solutions (20 µl). The determination of 237Np at a concentration of 10 ng l–1 by flow injection DF-ICP-MS was possible with a precision of 2.0% (RSD, n=5). In order to avoid mass spectral interferences and matrix effects long-lived radionuclides (e.g., of U, Th and 99Tc) were separated from the radioactive waste matrix by liquid-liquid extraction or ion exchange. The methods developed for the precise determination of the concentration and isotopic ratios of long-lived radionuclides were applied to aqueous standard solutions and radioactive wastes by double-focusing sector field ICP-MS. The precision of Pu isotopic analysis by double-focusing ICP-MS with a shielded torch was 0.2, 2 and 14% for 1000, 100 and 10 pg l–1 (amount of analyte: 500, 50 and 5 fg), respectively.


References

  1. J. S. Crain, Spectroscopy, 1996, 11, 31 Search PubMed.
  2. C. K. Kim, R. Seki, S. Morita, S. Yamasaki, T. Tsumura, Y. Igarashi and M. Yamamoto, J. Anal. At. Spectrom., 1991, 6, 205 RSC.
  3. J. S. Becker and H.-J. Dietze, Adv. Mass Spectrom., 1998, 14, 681 Search PubMed.
  4. G. P. Russ and J. M. Bazan, Spectrochim. Acta, Part B, 1987, 42, 49 CrossRef.
  5. J. S. Becker and H.-J. Dietze, J. Anal. At. Spectrom., 1997, 12, 881 RSC.
  6. I. T. Platzner, Modern Isotope Ratio Mass Spectrometry, Wiley, New York, 1997 Search PubMed.
  7. J. I. Garcia Alonso, D. Thoby-Schultzendorff, B. Giovanonne, J.-P. Glatz, G. Pagliosa and L. Koch, J. Anal. At. Spectrom., 1994, 9, 1209 RSC.
  8. Inductively Coupled Plasma Mass Spectrometry, ed. A. Montaser, Wiley, New York, 1998 Search PubMed.
  9. J. S. Becker and H.-J. Dietze, Spectrochim. Acta, Part B, 1998, 53, 1475 CrossRef.
  10. N. Jakubowski, L. Moens and F. Vanhaecke, Spectrochim. Acta, Part B, 1998, 53, 1739 CrossRef.
  11. P. D. P. Taylor, P. De Bievre, A. J. Walder and A. Entwistle, J. Anal. At. Spectrom., 1995, 10, 395 RSC.
  12. I. T. Platzner, J. S. Becker and H.-J. Dietze, At. Spectrosc., 1999, 20, 6 CAS.
  13. W. Kerl, J. S. Becker, H.-J. Dietze and W. Dannecker, J. Anal. At. Spectrom., 1996, 11, 723 RSC.
  14. R. Chappini, J.-M. Taillade and S. Brébion, J. Anal. At. Spectrom., 1996, 11, 497 RSC.
  15. S. Stürup, H. Dahlgaard and S. C. Nielsen, J. Anal. At. Spectrom., 1998, 13, 1321 RSC.
  16. A. E. Eroglu, C. W. McLeod, K. S. Leonard and D. McCubbin, J. Anal. At. Spectrom., 1998, 13, 875 RSC.
  17. J. S. Becker and H.-J. Dietze, Fresenius' J. Anal. Chem., 1999, 364, 482 CrossRef CAS.
  18. J. S. Becker, R. S. Soman, K. L. Sutton, J. A. Caruso and H.-J. Dietze, J. Anal. At. Spectrom., 1999, 14, 933 RSC.
  19. J. A. McLean, H. Zhang and A. Montaser, Anal. Chem., 1998, 70, 1012 CrossRef CAS.
  20. J. S. Becker, H.-J. Dietze, J. A. McLean and A. Montaser, Anal. Chem., in the press Search PubMed.
  21. D. Wiederin and W. Hamester, presented at the 1998 Winter Conference on Plasma Spectrochemistry, Scottsdale, AZ, January 5–10, 1998, FP 40, Book of Abstracts, p. 349.
  22. A. L. Gray, J. Anal. At. Spectrom., 1986, 1, 247 RSC.
  23. R. Tanaka, K. Yonemura, M. Tanabe and H. Kawaguchi, Anal. Sci., 1991, 7, 537 CAS.
  24. J. Sakata and K. Kawabata, Spectrochim. Acta, Part B, 1994, 49, 1027 CrossRef.
  25. N. S. Nonose, N. Matsuda, N. Fudagawa and M. Kubota, Spectrochim. Acta, Part B, 1994, 49, 955 CrossRef.
  26. H.-J. Dietze, ZFI-Mitteilungen(Reports of the Central Institute for Isotope and Radiation Research, Leipzig, Germany), 1979, 27, 101 Search PubMed.
  27. E. Hertendi, Z. Szücs, J. Csongor, J. Gulyás, E. Svingor, P. Ormai, A. Fritz, J. Solymosi, I. Gresitis, N. Vajda and Z. Molnar, Proceedings of the 3rd Regional Meeting: Nuclear Energy in Central Europe, Portoroz, Slovenia, September 16–19, 1996.
  28. Z. Szücs and J. S. Becker, unpublished work.
  29. A. E. Eroglu, C. W. McLeod, K. S. Leonard and D. McCubbin, Spectrochim. Acta, Part B, 1998, 53, 1221 CrossRef.
  30. J. S. Becker, H.-J. Dietze, R. S. Soman, K. L. Sutton and J. A. Caruso, J. Anal. At. Spectrom., 1999, 14, 933 RSC.
  31. M. Yamamoto, K. Syarbaini, K. Kofuji, A. Tsumura, K. Komura, K. Ueno and D. J. Assinder, J. Radioanal. Nucl. Chem., 1995, 197, 185 CAS.
  32. W. Kerl, J. S. Becker, H.-J. Dietze and W. Dannecker, Advances in Mass Spectrometry, Vol. 14, MoPo143, Proceedings of the 14th International Mass Spectrometry Conference, Tampere, Finland, August 25–29, 1997 Search PubMed.
  33. W. Kerl, J. S. Becker, H.-J. Dietze and W. Dannecker, Fresenius' J. Anal. Chem., 1997, 359, 40 CrossRef.
  34. J. Robben and R. Gijbels, presented at the European Winter Conference on Plasma Spectrochemistry, Pau, France, January 10–15, 1999, F6, Book of Abstracts, p. 117.