Rapid determination of Cu, Fe, Mg, Mn and Zn in wood pulp by direct sample insertion-inductively coupled plasma-optical emission spectrometry using a pyrolytically coated graphite sample probe

(Note: The full text of this document is currently only available in the PDF Version )

Michael E. Rybak, Panos Hatsis, Kevin Thurbide and Eric D. Salin


Abstract

A rapid method for screening wood pulp samples by direct sample insertion-inductively coupled plasma-optical emission spectrometry (DSI-ICP-OES) is described. Solid wood pulp samples were introduced directly into an inductively coupled plasma, using a pyrolytically coated graphite DSI sample probe, after in situ chemical treatment with HCl and NaF. Drying and ashing steps were performed by inductively heating the sample probe in the ICP coil prior to plasma ignition. The analysis time of the method from sample acquisition to analysis was of the order of several minutes per sample, as compared to several hours when conventional dissolution methods are used. Agreement with reference values for wood pulp samples ranged from 3.4–16% (absolute) for high-concentration analytes (Mg, Mn) and 1.7–50% (absolute) for low-concentration ones (Cu, Fe, Zn) using external standards. Precision ranged from 6–50% RSD and was highly dependent on the element and pulp sample studied. Absolute detection limits for the method were of the range of 50–1000 pg, translating into relative detection limits of 20–400 ppb based on a 2.5 mg pulp sample. The merits of using DSI-ICP-OES for the direct analysis of wood pulps, and of using a pyrolytically coated graphite probe for this type of application, are discussed.


References

  1. B. Van Lierop, N. Liebergott and M. Faubert, J. Pulp Pap. Sci., 1994, 20, J193 Search PubMed.
  2. J. D. Sinkey and N. S. Thompson, Pap. Puu, 1974, 5, 473 Search PubMed.
  3. J. Prasakis, M. Sain and C. Daneault, TAPPI J., 1996, 79, 161 Search PubMed.
  4. J. Bouchard, H. M. Nugent and R. M. Berry, Preprints CPPA International Pulp Bleaching Conference, 1994, 33 Search PubMed.
  5. Standard Method G.34P, Canadian Pulp and Paper Association.
  6. Standard Method T 266 om-88, Technical Association of the Pulp and Paper Industry (TAPPI).
  7. D. R. Hull and G. Horlick, Spectrochim. Acta, Part B, 1984, 38, 843 CrossRef.
  8. I. Atsuya, T. Itoh and T. Kurotaki, Spectrochim. Acta, Part B, 1991, 46, 103 CrossRef.
  9. A. Lorber and Z. Goldbart, Analyst, 1985, 110, 155 RSC.
  10. E. D. Salin, C. V. Monasterios and A. M. Jones, Anal. Chem., 1986, 58, 780 CrossRef.
  11. W. E. Pettit and G. Horlick, Spectrochim. Acta, Part B, 1986, 41, 699 CrossRef.
  12. G. Zaray, J. A. C. Broekaert and F. Leis, Spectrochim. Acta, Part B, 1988, 43, 241 CrossRef.
  13. C. D. Skinner and E. D. Salin, J. Anal. At. Spectrom., 1997, 12, 725 RSC.
  14. W. Huettner and C. Busche, Fresenius Z. Anal. Chem., 1986, 323, 674 CrossRef CAS.
  15. M. E. Rybak and E. D. Salin, J. Anal. At. Spectrom., 1998, 13, 707 RSC.
  16. G. Légère and P. Burgener, ICP Inf. Newsl., 1987, 13, 521 Search PubMed.
  17. G. A. Smook, Handbook for Pulp and Paper Technologists, Angus Wilde, Vancouver, 2nd edn., pp. 36–45 Search PubMed.
  18. V. Karanassios, M. Abdullah and G. Horlick, Spectrochim. Acta, Part B, 1990, 45, 119 CrossRef.
  19. X. R. Liu and G. Horlick, J. Anal. At. Spectrom., 1994, 9, 833 RSC.
  20. W. Rüdorff and G. Rüdorff, Z. Anorg. Allg. Chem., 1947, 253, 281 CAS.
  21. Analytical Methods Committee, Analyst, 1987, 112, 199 Search PubMed.
  22. R. L. A. Sing and E. D. Salin, Anal. Chem., 1989, 61, 163 CrossRef CAS.
  23. E. Sjöström, Wood Chemistry: Fundamentals and Applications, Academic Press, San Diego, CA, USA, 2nd edn., p. 107 Search PubMed.
  24. B. B. Sitholé, Anal. Chem., 1995, 67, 87R CAS.
  25. D. M. Goltz, C. D. Skinner and E. D. Salin, Spectrochim. Acta, Part B, 1998, 53, 1139 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.