Analysis of ZrO2 powders by microwave assisted digestion at high pressure and ICP atomic spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

Dirk Merten, Jose A. C. Broekaert, Rolf Brandt and Norbert Jakubowski


Abstract

Microwave assisted digestion at high pressure was investigated for the dissolution of different ZrO2-based ceramic powders and their subsequent analysis performed by inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS). For a fine grain size ZrO2 powder (median particle size <1.9 µm) the results were found to well agree with those obtained in the case of conventional digestion at high pressure, decomposition by fusion with NH4HSO4 and slurry nebulization ICP-OES. In the case of microwave assisted digestion at high pressure, up to 600 mg of ZrO2 could be dissolved within only 60 min, whereas by conventional digestion at high pressure up to 1000 mg ZrO2 powder could be dissolved; however, this required a time of 10 h. By fusion with NH4HSO4 it was not possible to dissolve all of the ceramic powders investigated completely. For all investigated elements excepted for B and Si, recoveries of 100% were obtained within the level of experimental error 3-13%. Detection limits, in the case of ZrO2 powders with high concentrations of Hf, Na and Y, were found to range from 0.03 µg g–1 for Mg, when applying conventional digestion at high pressure, over 0.4 µg g–1 for Fe, in the case of microwave assisted digestion at high pressure, to 92 µg g–1 for Na in the case of slurry nebulization ICP-OES and 114 µg g–1 in the case of Y subsequent to decomposition by fusion. The results of analysis subsequent to the different dissolution methods and those obtained with slurry nebulization ICP-OES agreed well for the elements Cr, Fe, Hf, Mg, Na, Ti and Y. With quadrupole based inductively coupled plasma mass spectrometry Na could be determined at the 600 µg g–1 level and the results agreed well with those obtained by ICP-OES, whereas for Al, Cr, Cu, Fe, Mg, Mn and Ni spectral interferences were found to hamper analyses. For Li, as well as for Ce, La, Pr and Th, it could be shown that the impurity levels in the samples analyzed were below 2 and 1 µg g–1, respectively.


References

  1. J. A. C. Broekaert, T. Graule, H. Jenett, G. Tölg and P. Tschöpel, Fresenius' Z. Anal. Chem., 1989, 332, 825 CrossRef CAS.
  2. Y. T. Yan, N. Miura and N. Yamazoe, Sens. Actuators, 1995, B24, 287 Search PubMed.
  3. H. Kurosawa, Y. Yan, N. Miura and N. Yamazoe, Chem. Lett., 1994, 1733.
  4. Y. Hu and P. Carr, Anal. Chem., 1998, 70, 1934 CrossRef CAS.
  5. J. A. C. Broekaert and G. Tölg, Mikrochim. Acta, 1990, II, 173.
  6. R. Lobinski, J. A. C. Broekaert, P. Tschöpel and G. Tölg, Fresenius' J. Anal. Chem., 1992, 342, 569 CrossRef CAS.
  7. K. Kimura, Bull. Chem. Soc. Jpn., 1961, 34, 63 CAS.
  8. C. F. Coleman, C. A. Blake and K. B. Brown, Talanta, 1962, 9, 297 CrossRef CAS.
  9. J. A. C. Broekaert, C. Lathen, R. Brandt, C. Pilger, D. Pollmann, P. Tschöpel and G. Tölg, Fresenius' J. Anal. Chem., 1994, 349, 20 CrossRef CAS.
  10. H. Min and S. Xi-en, Spectrochim. Acta, Part B, 1989, 44, 957 CrossRef.
  11. L. Ebdon, M. Foulkes and K. Sutton, J. Anal. At. Spectrom., 1997, 12, 213 RSC.
  12. D. Merten, P. Heitland and J. A. C. Broekaert, Spectrochim. Acta, Part B, 1997, 52, 1905 CrossRef.
  13. B. Raeymaekers, T. Graule, J. A. C. Broekaert, F. Adams and P. Tschöpel, Spectrochim. Acta, Part B, 1988, 43, 923 CrossRef.
  14. S. Hauptkorn, G. Schneider and V. Krivan, J. Anal. At. Spectrom., 1994, 9, 463 RSC.
  15. G. Schneider and V. Krivan, Spectrochim. Acta, Part B, 1995, 50, 1557 CrossRef.
  16. R. Bock, Aufschluβmethoden der anorganischen und organischen Chemie, VCH, Weinheim, Germany, 1972 Search PubMed.
  17. W. M. Wise and S. D. Solsky, Anal. Lett., 1976, 9, 1047 CAS.
  18. F. Kohl, N. Jakubowski, R. Brandt, C. Pilger and J. A. C. Broekaert, Fresenius' J. Anal. Chem., 1997, 359, 317 CrossRef CAS.
  19. J. Ito, Bull. Chem. Soc. Jpn., 1962, 35, 225.
  20. J. Dolezal, L. Lenz and S. Sulcek, Anal. Chim. Acta, 1969, 47, 517 CrossRef CAS.
  21. K. Stulik, P. Beran and J. Dolezal, Talanta, 1978, 25, 363 CrossRef CAS.
  22. N. Z. Baluch, K. Anwar, S. M. Ifzal and D. Mohammad, J. Radioanal. Nucl. Chem., 1990, 141, 417 CAS.
  23. M. T. Larrea, I. Gómez-Pinilla and J. C. Fariñas, J. Anal. At. Spectrom., 1997, 12, 1323 RSC.
  24. G. Zaray, G. Konya, J. A. C. Broekaert and F. Leis, Chem. Anal. (Warsaw), 1990, 35, 311 Search PubMed.
  25. M. Willert-Porada, personal communication.
  26. H. M. Kingston and L. B. Jassie, Introduction to Microwave Sample Preparation. Theory and Practice, American Chemical Society, Washington, DC, USA, 1988 Search PubMed.
  27. J. C. Fariñas, R. Moreno and J.-M. Mermet, J. Anal. At. Spectrom., 1994, 9, 841 RSC.
  28. D. Merten, J. A. C. Broekaert and A. Le Marchand, J. Anal. At. Spectrom., 1997, 12, 1387 RSC.
  29. W. A. Van Borm and J. A. C. Broekaert, Anal. Chem., 1990, 62, 2527 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.