Application of capillary electrophoresis-electrospray ionisation mass spectrometry to arsenic speciation

(Note: The full text of this document is currently only available in the PDF Version )

O. Schramel, B. Michalke and A. Kettrup


Abstract

The on-line coupling of capillary electrophoresis (CE) and electrospray ionisation mass spectrometry (ESI-MS) is a very useful tool for speciation analysis. This hyphenated technique provides elemental (isotopic pattern, if the element is not monoisotopic) as well as structural (molecular mass and/or fragmentation) information on an unknown species. Owing to several properties (high separation efficiency, low ‘flow rates’), CE is best suited as the separation device for this coupling. The geometrical dimensions of both systems require the use of rather long CE capillaries (up to 100 cm), which leads to long total analysis times. The application of pressure along the capillary during or after the CE separation shortens the total analysis time dramatically. The effects of this ‘pressure mobilisation’ on detection limits, peak shape and resolution are discussed in detail. The technique was applied to the speciation of arsenic. A CE method was developed, providing the separation of six arsenic species of interest in a single run {arsenite [As(III)], arsenate [As(v)], methylarsonic acid (MMA), dimethylarsinic acid (DMA) arsenobetaine (AsB) and arsenocholine (AsC)}. The method used an acidic electrolyte system (ammonium acetate-acetic acid) for pH stacking. With the exception of As(III) and MMA, the arsenic species were baseline-separated from each other. Detection limits were calculated as 60-480 µg L–1 for the arsenic species. The only exception was arsenite, As(III), with a detection limit of 50 mg L–1. The method was applied to standard mixtures and urine samples.


References

  1. W. Goessler, C. Schlagenhaufen, D. Kuehnelt, H. Greschonig and K. I. Irgolic, Appl. Organomet. Chem., 1997, 11, 327 CrossRef CAS.
  2. H. Greschonig, M. G. Schmid and G. Gübitz, Fresenius' J. Anal. Chem., 1998, 362, 218 CrossRef CAS.
  3. A. R. Timerbaev, Electrophoresis, 1997, 18, 185 CAS.
  4. Y. M. Huang and C. W. Whang, Electrophoresis, 1998, 19, 2140 CAS.
  5. B. Michalke and P. Schramel, Electrophoresis, 1998, 19, 2220 CAS.
  6. Y. Liu, V. Lopez-Avila, J. J. Zhu, D. R. Wiederin and W. F. Beckert, Anal. Chem., 1995, 67, 2020 CrossRef CAS.
  7. A. T. Blades, P. Jayaweera, M. G. Ikonomou and P. Kebarle, Int. J. Mass Spectrom. Ion Processes, 1990, 101, 325 CrossRef CAS.
  8. A. T. Blades, P. Jayaweera, M. G. Ikonomou and P. Kebarle, Int. J. Mass Spectrom. Ion Processes, 1990, 102, 251 CrossRef CAS.
  9. G. R. Agnes and G. Horlick, Appl. Spectrosc., 1995, 49, 324 CAS.
  10. T. G. Huggins and J. D. Henion, Electrophoresis, 1993, 14, 531 CAS.
  11. Y. Xu, X. Zhang and A. L. Yergey, J. Am. Soc. Mass Spectrom., 1996, 7, 25 CrossRef CAS.
  12. R. Guevremont, K. W. M. Siu, J. C. Y. Le Blanc and S. S. Berman, J. Am. Soc. Mass Spectrom., 1992, 3, 216 CrossRef CAS.
  13. H. Chassaigne and R. Łobinski, Analyst, 1998, 123, 131 RSC.
  14. O. Schramel, B. Michalke and A. Kettrup, J. Chromatogr. A, 1998, 819, 231 CrossRef CAS.
  15. M. Vahter, Clin. Chem., 1994, 40, 679.
  16. X. C. Le, W. R. Cullen and K. J. Reimer, Clin. Chem., 1994, 40, 617 CAS.
  17. O. Schramel, B. Michalke and A. Kettrup, Fresenius' J. Anal. Chem., 1999, 363, 452 CrossRef CAS.
  18. B. Michalke and P. Schramel, Fresenius' J. Anal. Chem., 1997, 357, 594 CrossRef CAS.
  19. P. Schramel and S. Hasse, Fresenius' J. Anal. Chem., 1993, 346, 794 CrossRef CAS.
  20. J. J. Corr and J. F. Anacleto, Anal. Chem., 1996, 68, 2155 CrossRef CAS.
  21. J. Cai and J. Henion, J. Chromatogr. A, 1995, 703, 667 CrossRef CAS.
  22. R. D. Smith, J. A. Loo, C. G. Edmonds, C. J. Barinaga and H. R. Udseth, Anal. Chem., 1990, 62, 882 CrossRef CAS.
  23. D. C. Gale and R. D. Smith, Rapid Commun. Mass Spectrom., 1993, 7, 1017 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.