Sample-standard interaction during trace analysis of semiconductor-grade trimethylindium by inductively coupled plasma atomic emission spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

Rajesh K. Gupta, Assad Al-Ammar and Ramon M. Barnes


Abstract

Trimethylindium (TMI), used to make III-V semiconductor compounds, was analyzed by inductively coupled plasma atomic emission spectroscopy. Several calibration approaches were evaluated for the determination of impurities. Oil-based standards dissolved in xylene and in 10% trimethylindium solution in xylene were tested for external and matrix-matched calibrations. Significant differences in the two calibrations were observed for most elements, causing severe determination error. This difference is due to an exchange between the indium in the sample matrix and the metal in the standard analyte compound (i.e., sulfonate, naphthenate, octanoate). An analyte species with enhanced volatility results. The analytes exhibiting highest enhancement are Al, Cd, Pb, Hg, Sn and Zn. Elements showing moderate enhancements are B, Ca, Mg, Mn and Si. Some analytes (i.e., Be, Fe) exhibit no signal enhancement. The sensitivity increased from several to several thousand per cent compared with standard analytes in xylene. Results from a flow merging experiment suggest that interaction between the matrix (TMI) and the standard analyte compound is fast and reaches completion in a few seconds.


References

  1. A. Ohsawa, K. Honda, R. Takizawa, T. Nakanishi, M. Aoki and N. Toyokura, Proc.-Electrochem. Soc., 1990, 90-7(Semicond. Silicon 1990), pp. 601–613.
  2. T. Shimano, M. Morita, Y. Muramatu and M. Tsuji, in Proceedings of the Sixth Workshop in ULSI and Ultra Clean Technology, December 20, 1990, pp. 59–68 Search PubMed.
  3. S. A. Koch and T. Pinkston, ICP Inf. Newsl., 1994, 20(7), 491 Search PubMed.
  4. A. C. Jones, P. R. Jacobs, R. Cafferty, M. D. Scott, A. H. Moore and P. J. Wright, J. Cryst. Growth, 1986, 77(1–3), 47 CrossRef CAS.
  5. P. Van Zant, Microchip Fabrication: a Practical Guide to Semiconductor Processing, McGraw Hill, New York, 1990 Search PubMed.
  6. L. Rothman, D. Quinlan and S. Koch, in Proceedings of the 1992 Microcontamination Conference, Santa Clara, CA, pp. 635–644 Search PubMed.
  7. World Wide Web site http://rel.semi.harris.com/docs/lexicon.html.
  8. World Wide Web site http://rel.semi.harris.com/docs/lexicon/manufacture.html.
  9. R. J. Malik, Semiconductor Materials and Devices, Elsevier, Amsterdam, 1989 Search PubMed.
  10. R. Iscoff, Semicond. Int., 1990, July, 70 Search PubMed.
  11. I. Bertenyi and R. M. Barnes, Anal. Chem., 1988, 58, 1734.
  12. M. D. Argentine, A. Krushevska and R. M. Barnes, J. Anal. At. Spectrom., 1994, 9, 1121 RSC.
  13. M. D. Argentine and R. M. Barnes, J. Anal. At. Spectrom., 1994, 9, 1371 RSC.
  14. K. Takeda, M. Minobe, T. Hoshika, T. Jinno and T. Yako, Analyst, 1990, 115, 535 RSC.
  15. R. I. Botto and J. J. Zhu, J. Anal. At. Spectrom., 1994, 9, 905 RSC.
  16. A. C. Lazar and P. B. Farnsworth, Anal. Chem., 1997, 69, 3921 CrossRef CAS.
  17. D. S. Matteson, Organometallic Reaction Mechanisms of the Non-Transition Elements, Academic Press, New York, 1st edn., 1974, p. 36 Search PubMed.
  18. A. W. Parkins and R. C. Poller, An Introduction to Organometallic Chemistry, Macmillan, London, 1st edn., 1986 Search PubMed.
  19. A. J. Pearson, Metallo-Organic Chemistry, Wiley, New York, 1st edn., 1985, ch. 3 Search PubMed.
  20. P. Powell, Principles of Organometallic Chemistry, Chapman and Hall, London, 2nd edn., 1988 Search PubMed.
  21. S. A. Estes, P. C. Uden and R. M. Barnes, Anal. Chem., 1981, 53, 1829 CrossRef CAS.
  22. K. J. Slatkavitz, L. D. Hoey, P. C. Uden and R. M. Barnes, Anal. Chem., 1986, 57, 1846.
  23. P. C. Uden, J. Chromatogr. A, 1995, 703, 393 CrossRef CAS.
  24. A. S. Al-Ammar, R. K. Gupta and R. M. Barnes, J. Anal. At. Spectrom., in the press Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.