A dynamic reaction cell for inductively coupled plasma mass spectrometry (ICP-DRC-MS) . Part 1. The rf-field energy contribution in thermodynamics of ion-molecule reactions

(Note: The full text of this document is currently only available in the PDF Version )

Vladimir I. Baranov and Scott D. Tanner


Abstract

The existing vast database of ion-molecule reaction kinetics may, with advantage, be used to overcome spectral interference in ICP-MS. To be directly applicable to an rf multipole reactor, it must be shown that the multipole provides a controlled thermal environment. The contribution of the rf field energy to the ion energy is modeled for a quadrupole reaction cell. It is shown that the rf field contribution increases with increasing rf amplitude and decreasing rf frequency (i.e., towards the high-q side of the quadrupole stability region). A thermodynamic ladder is proposed as a convenient measure of the thermal characteristics of the reactor, and should serve as a benchmark for comparison of various reaction cell designs. Experimental results for charge transfer reactions are presented. These indicate that the configuration reported is near-thermal, with an rf field energy contribution less than about 0.4 eV. The rich variety of ion-molecule processes which might be studied is demonstrated by examples of condensation, simple association and complex ligation reactions.


References

  1. D. J. Douglas, Can. J. Spectrosc., 1989, 34, 38 Search PubMed.
  2. J. T. Rowan and R. S. Houk, Appl. Spectrosc., 1989, 46, 976.
  3. D. W. Koppenaal, C. J. Barinaga and M. R. Smith, J. Anal. At. Spectrom., 1994, 9, 1053 RSC.
  4. D. J. Douglas, J. Phys. Chem., 1982, 6, 185 CrossRef.
  5. V. G. Anicich, AP J. Suppl. Ser., 1993, 84, 215 Search PubMed.
  6. G. C. Eiden, C. J. Barinaga and D. W. Koppenaal, J. Anal. At. Spectrom., 1996, 11, 317 RSC.
  7. K. M. Ervin and P. B. Armentrout, J. Chem. Phys., 1985, 83, 166 CrossRef CAS.
  8. D. Gerlich, in ‘State-Selected and State-to-State Ion-Molecule Reaction Dynamics. Part 1. Experiment’, ed. C.-Y. Ng and M. Bear, Adv. Chem. Phys., 1992, 82, 1 Search PubMed.
  9. I. Szabo, Int. J. Mass Spectrom. Ion Processes, 1986, 73, 197 CrossRef CAS.
  10. P. H. Dawson, Int. J. Mass Spectrom. Ion Phys., 1974, 14, 317 CrossRef CAS.
  11. G. A. Bird, in Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford, UK, 1995 Search PubMed.
  12. J. H. Keenan and J. Kaye, Gas Tables, John Wiley, NY, USA, 1948 Search PubMed.
  13. D. J. Douglas and J. B. French, J. Anal. At. Spectrom., 1988, 3, 743 RSC.
  14. S. D. Tanner, D. J. Douglas and J. B. French, Appl. Spectrosc., 1994, 48, 1373 CAS.
  15. V. I. Baranov and S. D. Tanner, FACSS presentation no. 248, Providence, Rhode Island, USA, October 26–30, 1997.
  16. S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin and W. G. Mallard, J. Phys. Chem. Res. Data, 1988, 17, 1 Search PubMed.
  17. D. J. Douglas and J. B. French, J. Am. Soc. Mass Spectrom., 1992, 3, 398 CrossRef CAS.
  18. D. J. Douglas, J. Am. Soc. Mass Spectrom., 1998, 9, 101 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.