The influence of true simultaneous internal standardization and background correction on repeatability for laser ablation and the slurry technique coupled to ICP emission spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

Joachim Nölte, Franziska Scheffler, Sabine Mann and Michael Paul


Abstract

For the solid sampling techniques laser ablation and the slurry technique, the influence of simultaneous measurement vs. sequential measurement of the signal and background and the internal standard was investigated on an identical data set. The experiments were carried out with an array spectrometer, which generates spectra rather than single points. These spectra, typically measured around the analyte wavelength, are measured simultaneously. The ICP spectrometer used has a `profiling' mode, whereby the entrance slit is moved fourfold and the spectra are recorded with a small spectral shift in a sequential manner. These images are then combined to form a spectrum which is composed of simultaneous and sequential measured data. Hence, by carefully selecting the data points in a measured spectrum, the difference between simultaneous and sequential measurements can be estimated from an identical data set. In the example studied, simultaneous background correction and simultaneous internal standardization (typical for array ICP-OES) gave a mean RSD of 3.6%, sequential background correction and simultaneous internal standardization (typical for simultaneous ICP-OES) produced an average RSD of 6.1% and sequential background correction and sequential internal standardization (typical for sequential ICP-OES) resulted in a mean RSD of 6.4%. The RSDs reflect the solid sampling procedure. Some applications of laser ablation and slurry sampling are presented.


References

  1. M. Thompson, C. D. Flint, S. Chenery and K. Knight, J. Anal. At. Spectrom., 1992, 7, 1099 RSC.
  2. J. C. Ivaldi and J. F. Tyson, Spectrochim. Acta, Part B, 1996, 51, 1443 CrossRef.
  3. J.-M. Mermet and J. C. Ivaldi, J. Anal. At. Spectrom., 1993, 8, 795 RSC.
  4. M. Sperling, PELIDAS—Personal Literature Data System, Bodenseewerk Perkin-Elmer GmbH, Überlingen, 1998 Search PubMed.
  5. J. Nölte, L. Moenke-Blankenburg and T. Schumann, Fresenius' J. Anal. Chem., 1994, 349, 131 CrossRef.
  6. J. Nölte, Fresenius J. Anal. Chem., 1996, 355, 889 CAS.
  7. E. Poussel and J.-M. Mermet, Spectrochim. Acta, Part B, 1996, 51, 75 CrossRef.
  8. J. Nölte, J. Schöppenthau, L. Dunemann, T. Schumann and L. Moenke-Blankenburg, J. Anal. At. Spectrom., 1995, 10, 655 RSC.
  9. T. W. Barnard, M. I. Crockett, J. C. Ivaldi and P. L. Lundberg, Anal. Chem., 1993, 65, 1225 CrossRef CAS.
  10. T. W. Barnard, M. I. Crockett, J. C. Ivaldi, P. L. Lundberg, D. A. Yates, P. A. Levine and D. J. Sauer, Anal. Chem., 1993, 65, 1231 CrossRef CAS.
  11. J. C. Ivaldi and J. F. Tyson, Spectrochim. Acta, Part B, 1995, 50, 1207 CrossRef.
  12. M. Duffy and R. Thomas, At. Spectrosc., 1996, 17, 128 CAS.
  13. J. G. Williams, A. L. Gray, P. Norman and L. Ebdon, J. Anal. At. Spectrom., 1987, 2, 469 RSC.
  14. L. Ebdon, M. E. Foulkes and S. J. Hill, J. Anal. At. Spectrom., 1990, 5, 67 RSC.
  15. I. Halicz and I. B. Brenner, Spectrochim. Acta, Part B, 1987, 42, 207 CrossRef.
  16. D. A. Laird, R. H. Dowdy and R. C. Munter, J. Anal. At. Spectrom., 1990, 5, 515 RSC.
  17. P. Goodall, M. E. Foulkes and L. Ebdon, Spectrochim. Acta, Part B, 1993, 48, 1563 CrossRef.
  18. L. Ebdon and A. R. Collier, J. Anal. At. Spectrom., 1988, 3, 557 RSC.
  19. M. Ducreux-Zappa and J.-M. Mermet, Spectrochim. Acta, Part B, 1996, 51, 333 CrossRef.
  20. R. Lobinski, W. Van Borm, J. A. C. Broekaert, P. Tschöpel and G. Tölg, Fresenius' J. Anal. Chem., 1992, 342, 563 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.