Determination of arsenic, antimony, bismuth, germanium, tin, selenium and tellurium in 30% zinc sulfate solution by hydride generation inductively coupled plasma atomic emission spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

Christine Rigby and Ian D. Brindle


Abstract

A method was developed for the determination of arsenic, antimony, bismuth, germanium, tin, selenium and tellurium at low ng g–1 levels in 30% m/v ZnSO4, an important intermediate chemical in the manufacture of dry-cell batteries. Paradoxically, in order to achieve the detection limits required, it was necessary to dilute the zinc sulfate solution 10-fold. It was also necessary to match the zinc matrix in order to generate curves with similar sensitivities. Two separate determinations were necessary, one in high concentration acid (4.2 m), for selenium and tellurium, and the remaining elements in low concentration acid (0.1 m). The use of both l-cysteine (0.5% m/v) and l-histidine (0.65 m/v) was deemed necessary to provide the best conditions for the determination of arsenic, antimony, bismuth, germanium and tin. Method detection limits achievable, following 10 fold dilution, for the 30% m/v zinc sulfate matrix for As, Bi, Ge, Sb, Se, Sn and Te were 3, 3, 8, 2, 3, 2 and 38 µg l–1, respectively. Precisions at concentrations of 25 µg l–1 for As, Bi, Sb, Se, Sn, were 2, 2, 2, 3 and 1%, respectively. The precisions for tellurium and germanium were poor: 30% for tellurium at a concentration of 100 µg l–1 and 30% for germanium at a concentration of 10 µg l–1.


References

  1. J. Dedina and D. L. TsalevHydride Generation Atomic Absorption Spectrometry, John Wiley & Sons, New York, 1995, pp. 248–249 Search PubMed.
  2. C. W. Scheele, Sven. Vet. Akad. Handl., 1775, 36, 265 Search PubMed; described in J. W. Mellor, A Comprehensive Treatment on Inorganic and Theoretical Chemistry, Longmans, London, 1960, vol. IX, p. 50 Search PubMed.
  3. W. Holak, Anal. Chem., 1969, 41, 1712 CrossRef.
  4. T. Nakahara, in Sample Introduction in Atomic Spectroscopy, ed. J. Sneddon, Elsevier, Amsterdam, 1990, pp. 255et seq Search PubMed.
  5. X.-C. Le, W. R. Cullen, K. J. Reimer and I. D. Brindle, Anal. Chim. Acta, 1992, 258, 307 CrossRef.
  6. A. C. Chapman and H. D. Law, Analyst, 1906, 31, 3 RSC.
  7. A. E. Smith, Analyst, 1975, 100, 300 RSC.
  8. E. Lugowska and I. D. Brindle, Analyst, 1997, 122, 1559 RSC.
  9. C. L. Bloxam, Q. J. Chem. Soc., 1860, 13, 338 Search PubMed.
  10. H. Chen, W. Yao, D. Wu and I. D. Brindle, Spectrochim. Acta, Part B, 1996, 51, 1829 CrossRef.
  11. H. Chen, I. D. Brindle and S. Zheng, Analyst, 1992, 117, 1603 RSC.
  12. H. Chen, I. D. Brindle and X.-C. Le, Anal. Chem., 1992, 64, 667 CrossRef CAS.
  13. I. D. Brindle, H. Alarabi, S. Karshman, X.-C. Le, S. Zheng and H. Chen, Analyst, 1992, 117, 407 RSC.
  14. I. D. Brindle, X.-C. Le and H. Chen, J. Anal. At. Spectrom., 1991, 6, 129 RSC.
  15. I. D. Brindle and X.-C. Le, Anal. Chim. Acta, 1990, 229, 239 CrossRef CAS.
  16. I. D. Brindle and X.-C. Le, Anal. Chem., 1989, 61, 1175 CrossRef CAS.
  17. I. D. Brindle, X.-C. Le and X.-F. Li, J. Anal. Atom. Spectrom., 1989, 4, 227 RSC.
  18. C. Boampong, I. D. Brindle, X.-C. Le, L. Pidwerbesky and C. M. C. Ponzoni, Anal. Chem., 1988, 60, 1185 CrossRef CAS.
  19. I. D. Brindle and X.-C. Le, Analyst, 1988, 113, 1377 RSC.
  20. A. G. Howard and C. Salou, J. Anal. At. Spectrom., 1998, 13, 683 RSC.
  21. R. K. Anderson, M. Thompson and E. Culbard, Analyst, 1986, 111, 1143 RSC.
  22. R. K. Anderson, M. Thompson and E. Culbard, Analyst, 1986, 111, 1153 RSC.
  23. I. D. Brindle and E. Lugowska, Spectrochim. Acta, Part B, 1997, 52, 163 CrossRef.
  24. J. Dedina and D. L. Tsalev, Hydride Generation Atomic Absorption Spectrometry, Wiley, New York, 1995, pp. 270–271 Search PubMed.
  25. J. C. Miller and J. N. Miller, Statistics for Analytical Chemistry, Ellis Horwood, Chichester, 3rd edn., 1993, pp. 110–120 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.