Determination of chromium in urine by electrothermal atomic absorption spectrometry using different chemical modifiers

(Note: The full text of this document is currently only available in the PDF Version )

J. L. Burguera, M. Burguera, C. Rondon, L. Rodríguez, P. Carrero, Y. Petit de Peña and E. Burguera


Abstract

The effects of the chemical modifiers Eu, Mg(NO3)2, Pd, Eu-Pd and Ni and the use of longitudinally (with deuterium lamp background correction) and transversally (with Zeeman effect background correction) heated atomizers on the determination of chromium in urine samples were studied. When longitudinally heated atomizers were used, the background absorption was too high for the addition of most species, such as Mg(NO3)2, Pd, Eu-Pd and Ni, rendering its use unsuitable for the determination of chromium in urine. The addition of Eu led to lower background signals. However, when longitudinally heated atomizers were used larger background absorption signals were observed on addition of a modifier. In contrast, with transversally heated atomizers the background absorption signals were low and were not influenced by the addition of a modifier, except when Mg(NO3)2 was added. In this case, the atomization signal shapes and the sensitivity were improved. The characteristic masses (m0) and limits of detection (3σ) were 2.2 and 3.3 pg and 0.02 and 0.04 µg Cr l–1 for the longitudinally (using Eu as modifier) and transversally [using Mg(NO3)2] heated atomizers, respectively. Recovery studies and analysis of standard reference materials certified for chromium were performed to asses the accuracy. The results for the determination of chromium in real samples with both background correction procedures agreed well with a precision between 0.8 and 2.5%. Both procedures can be recommended and the choice will depend on instrument availability.


References

  1. R. A. Goyer, in Casarett and Doull's Toxicology: the Basic Science of Poisons, ed. C. D. Klassen, M. O. Amdur and J. Doull, Macmillan, New York, 3rd edn., 1986 Search PubMed.
  2. E. J. Underwood, Trace Elements in Human and Animal Nutrition, Academic Press, New York, 4th edn., 1977 Search PubMed.
  3. W. Slavin, G. R. Carnrick, D. C. Manning and E. Pruszkowska, At. Spectrosc., 1983, 4, 69 CAS.
  4. K. Ohta, H. R. Uegomori, S. Itoh and T. Mizuno, Microchem. J., 1997, 56, 343 CrossRef CAS.
  5. E. Alvarez-Cabal Cimadevilla, K. Wróbel, J. M. Marchante Gayón and A. Sanz-Medel, J. Anal. At. Spectrom., 1994, 9, 117 RSC.
  6. A. Taylor, S. Branch, D. J. Halls, L. M. W. Owen and M. White, J. Anal. At. Spectrom., 1998, 13, 67R Search PubMed.
  7. B. L. Gong and Y. M. Liu, At. Spectrosc., 1990, 11, 229 CAS.
  8. S. T. Sauerhoff, Z. A. Grosser and G. R. Carnrick, At. Spectrosc., 1996, 17, 273.
  9. R. Rubio, A. Sahuquillo, G. Rauret, L. Garcia Beltran and Ph. Quevauviller, Anal. Chim. Acta, 1993, 283, 207 CrossRef CAS.
  10. J. N. Marks, M. A. White and A. R. Boran, At. Spectrosc., 1988, 9, 73 CAS.
  11. J. Kumpulainen, J. Lehto, P. Koivvistoinen, M. Uusitupa and E. Vuori, Sci. Total Environ., 1983, 31, 71 CAS.
  12. D. C. Paschal and G. G. Bailey, At. Spectrosc., 1991, 12, 151 CAS.
  13. P. Chappuis, J. Poupon, J. F. Deschamps, P. J. Guillausseau and F. Rousselet, Biol. Trace Elem. Res., 1992, 32, 85 Search PubMed.
  14. C. Veillon, K. Y. Patterson and N. A. Bryden, Clin. Chem., 1982, 28, 2309 CAS.
  15. V. A. Granadillo, L. P. de Machado and R. A. Romero, Anal. Chem., 1994, 66, 3624 CrossRef CAS.
  16. W. Slavin, Graphite Furnace AAS. A Source Book, Perkin-Elmer, Norwalk, CT, 1984 Search PubMed.
  17. O. Gene, S. Akman, A. R. Ozdural, S. Ates and T. Balkis, Spectrochim. Acta, Part B, 1981, 36, 163 CrossRef.
  18. J. L. Burguera, M. Burguera, C. E. Rondón and E. Burguera, At. Spectrosc., 1997, 18, 109 CAS.
  19. P. E. Burguera, A. Sanchez de Briceño, C. E. Rondón, J. L. Burguera, M. Burguera and P. Carrero, J. Trace Elem. Med. Biol., 1998, 12, 115 Search PubMed.
  20. M. Burguera, J. L. Burguera, C. Rondón, M. L. di Bernardo, M. Gallignani, E. Nieto and J. Salinas, Spectrochim. Acta, Part B, 1999, in the press Search PubMed.
  21. M. Burguera, J. L. Burguera, C. Rondón, M. R. Brunetto and C. Rivas, in Metal Ions in Biology and Medicine, ed. Ph. Collery, P. Bratter, V. Negretti de Bratter, L. Khassanova and J. C. Etienne, Libbey Eurotext, Paris, 1998, vol. 5, pp. 13–17 Search PubMed.
  22. G. Schlemmer, H. Schulze and C. Günner, Analytical Advantages of End-capped Tubes Used with a Transverse-heated Graphite Atomizer, Technical Summary Order No. TSAA-46 (B050–4288), Perkin-Elmer, Überlingen, 1995 Search PubMed.
  23. J. M. Harnly and B. Radziuk, J. Anal. At. Spectrom., 1995, 10, 197 RSC.
  24. A. Taylor and P. Green, J. Anal At. Spectrom., 1988, 3, 115 RSC.
  25. D. J. Halls and G. S. Fell, J. Anal. At. Spectrom., 1986, 1, 135 RSC.
  26. N. S. Thomaidis, E. A. Piperaki, C. R. Polydorou and C. E. Efstathiou, J. Anal. At. Spectrom., 1996, 11, 31 RSC.
  27. W. Slavin and G. R. Carnrick, At. Spectrosc., 1985, 6, 157 CAS.
  28. J. Versieck and R. Cornelis, Trace Elemments in Human Plasma or Serum, CRC Press, Boca Raton, FL, 1989 Search PubMed.
  29. K. S. Subramanian, Prog. Anal. Chem., 1988, 11, 513 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.