On the use of line intensity ratios and power adjustments to control matrix effects in inductively coupled plasma optical emission spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

E. H. van Veen and M. T. C. de Loos-Vollebregt


Abstract

In inductively coupled plasma optical emission spectrometry, matrix effects can be substantially reduced by applying robust operating conditions, i.e. a high rf power level and a low nebulizer gas flow. However, dissimilar line intensity changes are still observed, in particular with varying salt matrices. Calcium and, to a lesser extent, Mg induce stronger effects than Na and K. In 0.1, 0.3 and 1.0% Ca matrices, signal changes for 29 atomic as well as ionic lines have been determined with respect to the Ca-free solution. The changes range from –5 to –30% for the 1.0% Ca matrix. Starting from robust conditions in radial viewing, the rf power has been adjusted until the Cr ion-to-atom line ratio measured for the calcium solutions equalled the ratio determined during the calibration (0% Ca). By this power adjustment, the changes are within ±4%. No matrix effects originating from the sample introduction system are observed, probably due to the high acid concentrations used. The practical application of power adjustments is illustrated with results for certified sediment samples and with multiple line analysis for qualitative and semiquantitative analysis. The approach is an attractive alternative to matrix matching or standard additions. Internal standardization based on one atomic and one ionic line of the same element is indicated as another possibility.


References

  1. D. A. Sadler, F. Sun, S. E. Howe and D. Littlejohn, Mikrochim. Acta, 1997, 126, 301 CAS.
  2. A. Fernández, M. Murillo, N. Carrión and J.-M. Mermet, J. Anal. At. Spectrom., 1994, 9, 217 RSC.
  3. I. Novotny, J. C. Farinas, W. Jia-liang, E. Poussel and J.-M. Mermet, Spectrochim. Acta, Part B, 1996, 51, 1517 CrossRef.
  4. X. Romero, E. Poussel and J.-M. Mermet, Spectrochim. Acta, Part B, 1997, 52, 495 CrossRef.
  5. M. Carré, K. Lebas, M. Marichy, M. Mermet, E. Poussel and J.-M. Mermet, Spectrochim. Acta, Part B, 1995, 50, 271 CrossRef.
  6. C. Dubuisson, E. Poussel, J. L. Todoli and J.-M. Mermet, Spectrochim. Acta, Part B, 1998, 53, 593 CrossRef.
  7. J.-M. Mermet, J. Anal. At. Spectrom., 1998, 13, 419 RSC.
  8. X. Romero, E. Poussel and J.-M. Mermet, Spectrochim. Acta, Part B, 1997, 52, 487 CrossRef.
  9. J.-M. Mermet, Anal. Chim. Acta, 1991, 250, 85 CrossRef CAS.
  10. E. Poussel, J.-M. Mermet and O. Samuel, Spectrochim. Acta, Part B, 1993, 48, 743 CrossRef.
  11. L. Soudier and J.-M. Mermet, Appl. Spectrosc., 1995, 49, 1478 CAS.
  12. C. Rivier and J.-M. Mermet, Appl. Spectrosc., 1996, 50, 959 CAS.
  13. L. M. Cabalin and J.-M. Mermet, Appl. Spectrosc., 1997, 51, 898 CrossRef.
  14. R. B. Bilhorn and M. B. Denton, Appl. Spectrosc., 1989, 43, 1 CAS.
  15. M. J. Pilon, M. B. Denton, R. G. Schleicher, P. M. Moran and S. B. Smith Jr., Appl. Spectrosc., 1990, 44, 1613 CAS.
  16. T. W. Barnard, M. I. Crockett, J. C. Ivaldi and P. L. Lundberg, Anal. Chem., 1993, 65, 1225 CrossRef CAS.
  17. T. W. Barnard, M. I. Crockett, J. C. Ivaldi, P. L. Lundberg, D. A. Yates, P. A. Levine and D. J. Sauer, Anal. Chem., 1993, 65, 1231 CrossRef CAS.
  18. E. H. van Veen, S. Bosch and M. T. C. de Loos-Vollebregt, Spectrochim. Acta, Part B, 1997, 52, 321 CrossRef.
  19. J. A. Morales, E. H. van Veen and M. T. C. de Loos-Vollebregt, Spectrochim. Acta, Part B, 1998, 53, 683 CrossRef.
  20. M. Thompson, M. H. Ramsey, B. J. Coles and C. M. Du, J. Anal. At. Spectrom., 1987, 2, 185 RSC.
  21. B. Budi and V. Hudnik, J. Anal. At. Spectrom., 1994, 9, 53 RSC.
  22. C. Dubuisson, E. Poussel and J.-M. Mermet, J. Anal. At. Spectrom., 1997, 12, 281 RSC.
  23. I. B. Brenner, A. Zander, M. Cole and A. Wiseman, J. Anal. At. Spectrom., 1997, 12, 897 RSC.
  24. J. C. Ivaldi and J. F. Tyson, Spectrochim. Acta, Part B, 1995, 50, 1207 CrossRef.
  25. J. L. Todoli, J.-M. Mermet, A. Canals and V. Hernandis, J. Anal. At. Spectrom., 1998, 13, 55 RSC.
  26. I. I. Stewart and J. W. Olesik, J. Anal. At. Spectrom., 1998, 13, 1249 RSC.
  27. I. B. Brenner, M. Zischka, B. Maichin and G. Knapp, J. Anal. At. Spectrom., 1998, 13, 1257 RSC.
  28. C. Dubuisson, E. Poussel and J.-M. Mermet, J. Anal. At. Spectrom., 1998, 13, 1265 RSC.
  29. M. Hoenig, H. Doekalová and H. Baeten, J. Anal. At. Spectrom., 1998, 13, 195 RSC.
  30. C. Trassy and J. Robin, Spectrochim. Acta, Part B, 1988, 43, 79 CrossRef.
  31. R. Neuböck, W. Wegscheider and M. Otto, Microchem. J., 1992, 45, 343 CrossRef.
  32. D. P. Webb and E. D. Salin, J. Anal. At. Spectrom., 1989, 4, 793 RSC.
  33. D. P. Webb and E. D. Salin, Spectrochim. Acta, Part B, 1992, 47, E1587 CrossRef.
  34. D. A. Sadler and D. Littlejohn, J. Anal. At. Spectrom., 1996, 11, 1105 RSC.
  35. D. F. Wirsz and M. W. Blades, Anal. Chem., 1986, 58, 51 CrossRef CAS.
  36. D. F. Wirsz and M. W. Blades, J. Anal. At. Spectrom., 1988, 3, 363 RSC.
  37. D. F. Wirsz and M. W. Blades, Talanta, 1990, 37, 39 CrossRef CAS.
  38. P. Zhang, D. Littlejohn and P. Neal, Spectrochim. Acta, Part B, 1993, 48, 1517 CrossRef.
  39. E. H. van Veen and M. T. C. de Loos-Vollebregt, Spectrochim. Acta, Part B, 1998, 53, 639 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.