Determination of cadmium in biological and environmental materials by isotope dilution inductively coupled plasma mass spectrometry: effect of flow sample introduction methods

(Note: The full text of this document is currently only available in the PDF Version )

J. Pablo Valles Mota, M. Rosario Fernández de la Campa, J. Ignicio García Alonso and Alfredo Sanz-Medel


Abstract

Experimental parameters governing the instrumental precision and accuracy for isotope ratio measurements of cadmium in ICP-MS, including sampling time, mass bias, detector dead-time and spectroscopic interferences, were first characterised. The precision achieved for the isotope ratio determination of Cd was around 0.2% (RSD forn=5) both for 111:112 and 111:114 ratios. Two alternative flow approaches for the determination of ultratrace concentrations of cadmium by isotope dilution (ID) were explored and compared with the more conventional ID methodology: first, on-line mixing of the sample solution with the spike solution just before the ICP-MS nebuliser using a peristaltic pump and, second, the generation of volatile cadmium species using sodium tetraethylborate by merging zones flow injection ICP-MS. The three approaches were successfully applied to the determination of ultratrace levels of cadmium in biological and environmental certified reference materials (NIST SRM 2670 Freeze-Dried Urine, IAEA H-8 Horse Kidney, BCR TP-25 Lichens, PACS-1 Marine Sediment and SLRS-3 Riverine Water). The on-line ID method proved to be the most convenient for the determination of cadmium in such samples because it is fast, provides similar results to those of conventional ID and requires less sample preparation.


References

  1. Handbook on Toxicity of Inorganic Compounds, ed. H. G. Seiler and H. Sigel, Marcel Dekker, New York, 1988 Search PubMed.
  2. H. J. Yang, K. S. Huang, S. J. Jiang, C. C. Wu and C. H. Chou, Anal. Chim. Acta, 1993, 282, 437 CrossRef CAS.
  3. L. Ebdon, A. S. Fisher, P. J. Worsfold, H. Crews and M. Baxter, J. Anal. At. Spectrom., 1993, 8, 691 RSC.
  4. D. E. Nixon and T. P. Moyer, Spectrochim. Acta. Part B, 1996, 51, 13 CrossRef.
  5. J. M. Cook, J. J. Robinson, S. R. N. Chenery and D. L. Miles, Analyst, 1997, 12, 1207 RSC.
  6. H. Kumagai, M. Yamanaka, T. Sakai, T. Yokoyama, T. M. Suzuki and T. Suzuki, J. Anal. At. Spectrom., 1998, 13, 579 RSC.
  7. K. G. Heumann, in Inorganic Mass Spectrometry, ed. F. Adams, R. Gijbels and R. J. Grieken, Wiley, New York, 1988, p. 301 Search PubMed.
  8. J. R. Moody and M. S. Epstein, Spectrochim. Acta, Part B, 1991, 46, 1571 CrossRef.
  9. J. I. García-Alonso, Anal. Chim. Acta, 1995, 312, 57 CrossRef.
  10. I. Papadakis, P. D. P. Taylor and P. De Bièvre, Anal. Chim. Acta, 1997, 346, 17 CrossRef CAS.
  11. T. J. Hwang and S. J. Jiang, J. Anal. At. Spectrom., 1997, 12, 579 RSC.
  12. J. W. McLaren, D. Beauchemin and S. S. Berman, Anal. Chem., 1987, 59, 610 CrossRef CAS.
  13. D. Beauchemin, J. W. McLaren, A. P. Mykytiuk and S. S. Berman, Anal. Chem., 1987, 59, 778 CrossRef CAS.
  14. P. L. Lu, K. S. Huang and S. J. Jiang, Anal. Chim. Acta, 1993, 284, 181 CrossRef CAS.
  15. J. Wu and E. A. Boyle, Anal. Chem., 1997, 69, 2464 CrossRef CAS.
  16. T. Katoh, M. Akiyama, H. Ohtsuka, S. Nakamura, K. Haraguchi and K. Akatsuka, J. Anal. At. Spectrom., 1996, 11, 69 RSC.
  17. K. G. Heumann, Anal. Chim. Acta, 1993, 283, 230 CrossRef CAS.
  18. T. J. Hwang and S. J. Jiang, J. Anal. At. Spectrom., 1996, 11, 353 RSC.
  19. C. C. Chan and S. J. Jiang, J. Anal. At. Spectrom., 1997, 12, 75 RSC.
  20. K. H. Lee, S. H. Liu and S. J. Jiang, Analyst, 1998, 123, 1557 RSC.
  21. C. J. Park and J. K. Suh, J. Anal. At. Spectrom., 1997, 12, 573 RSC.
  22. J. M. Marchante-Gayón, J. I. García Alonso and A. Sanz-Medel, in Plasma Source Mass Spectrometry Developments and Applications, ed. G. Holland and S. D. Tanner, Royal Society of Chemistry, Cambridge, 1997, pp. 85–94 Search PubMed.
  23. A. Lásztity, M. Viczián, X. Wang and R. M. Barnes, J. Anal. At. Spectrom., 1989, 4, 761 RSC.
  24. M. Viczián, A. Lásztity, X. Wang and R. M. Barnes, J. Anal. At. Spectrom., 1990, 5, 125 RSC.
  25. H. Klinkenberg, T. Beeren, W. Van Borm, F. van der Linden and M. Raets, Spectrochim. Acta, Part B, 1993, 48, 649 CrossRef.
  26. M. C. Valdés-Hevia y Temprano, M. R. Fernández de la Campa and A. Sanz-Medel, J. Anal. At. Spectrom., 1994, 9, 231 RSC.
  27. J. P. Valles Mota, M. R. Fernández de la Campa and A. Sanz-Medel, J. Anal. At. Spectrom., 1998, 13, 431 RSC.
  28. P. J. De Bièvre and P. D. P. Taylor, Int. J. Mass Spectrom. Ion Processes, 1993, 123, 149 CrossRef CAS.
  29. C. W. McLeod, A. R. Date and Y. Y. Cheung, Spectrochim. Acta, Part B, 1986, 41, 169 CrossRef.
  30. J. Dedina and D. L. Tsalev, Hydride Generation Atomic Absorption Spectrometry, Wiley, New York, 1995 Search PubMed.
  31. A. D'Ulivo and Y. Chen, J. Anal. At. Spectrom., 1989, 4, 319 RSC.
  32. L. Ebdon, P. Goodall, S. J. Hill, P. B. Stockwell and K. C. Thompson, J. Anal. At. Spectrom., 1993, 8, 723 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.