Characterisation of surface layers formed under natural environmental conditions on medieval stained glass and ancient copper alloys using SEM, SIMS and atomic force microscopy

(Note: The full text of this document is currently only available in the PDF Version )

M. Schreiner, G. Woisetschläger, I. Schmitz and M. Wadsak


Abstract

Atmospheric corrosion is the result of interactions between a material and the surrounding environment. It involves a number of physical, chemical and electrochemical processes in the interfacial region ranging from the contacting atmosphere over the aqueous adlayer to the material itself. In this contribution surface analytical techniques such as scanning electron microscopy, in combination with energy dispersive X-ray microanalysis (SEM-EDX) and secondary ion mass spectrometry (SIMS) were applied to characterise the corrosion phenomena occurring on medieval stained glass and ancient bronze artefacts. A so-called leached layer has been formed on the glass surfaces due to an ion exchange process, where the potassium and calcium of the glass are replaced by hydrogen bearing species from the moist air. Subsequently, chemical reactions of the leached glass constituents K and Ca with acidifying gases in the ambient atmosphere has led to the formation of a weathering crust. On the surfaces of bronze artefacts a cuprous oxide (mainly) has been built up. Further chemical reactions are leading to crystalline weathering products such as brochantite or malachite depending on the environmental conditions. Additionally, tapping mode atomic force microscopy (TM-AFM) has been applied to study the initial stages of the weathering processes on glass with medieval composition and on pure copper. The task of the present work was not only to develop new analytical strategies and methods, but also to gain additional information of the surface processes involved. Protection against atmospheric corrosion requires such detailed understanding of the role of different corrosion stimulating constituents in the environment, such as humidity, gaseous pollutants and aerosol particulates.


References

  1. G. Frenzel, Sci. Am., 1985, 252, 100 Search PubMed.
  2. R. G. Newton, Glass Technol., 1985, 26, 21 Search PubMed.
  3. R. G. Newton, The Deterioration and Conservation of Painted Glass—a Critical Bibliography, Oxford University Press, Oxford, UK, 2nd edn., 1982 Search PubMed.
  4. R. Collongues, M. Perez y Jorba and G. Tilloca, Verres Refract., 1976, 30, 43 Search PubMed.
  5. G. A. Cox, O. S. Heavens and R. G. Newton, J. Glass Stud., 1979, 21, 54 Search PubMed.
  6. M. Schreiner, Glastechn. Ber., 1988, 61, 197 Search PubMed.
  7. M. Schreiner, Glastechn. Ber., 1988, 61, 223 Search PubMed.
  8. J. E. Shelby, J. Vitko and C. G. Pantano, Solar Energy Mater., 1980, 3, 97 Search PubMed.
  9. S. Railakshmi, M. Chakraborty and S. Basu, Trans. Indian Ceram. Soc., 1981, 40, 166 Search PubMed.
  10. J. O. Isard and A. R. Patel, Glass Technol., 1981, 22, 247 Search PubMed.
  11. H. Scholze, J. Non-Cryst. Solids, 1982, 52, 91 CAS.
  12. M. Schreiner, G. Stingeder and M. Grasserbauer, Fresenius' J. Anal. Chem., 1984, 319, 600 CAS.
  13. M. Schreiner, M. Grasserbauer and P. March, Fresenius' J. Anal. Chem., 1988, 331, 428 CAS.
  14. F. J. Briggs, The Chemical Durability of Medieval Glass. Technical Report, Department of Ceramics, Glass and Polymers, University of Sheffield, UK, 1978 Search PubMed.
  15. J. Alderborn, Investigation of Weathered Glass Surfaces with the Scanning Microscope, OECD-Report, DAS/SPR/71–35, 1971, 244 Search PubMed.
  16. W. H. J. Vernon and L. Whitby, J. Inst. Metals, 1930, 44, 389 Search PubMed.
  17. W. H. J. Vernon, Trans. Faraday Soc., 1931, 27, 255 RSC.
  18. W. H. J. Vernon, J. Inst. Metals, 1932, 49, 153 Search PubMed.
  19. E. Mattsson, Mater. Perf., 1982, 21, 9 Search PubMed.
  20. T. E. Graedel, Corrosion Sci., 1987, 27, 639, 721 and 741 Search PubMed.
  21. D. Persson and C. Leygraf, J. Electrochem. Soc., 1995, 142, 1459 CAS.
  22. T. Aastrup, J. Tidblad, C. Leygraf, M. Wadsak and M. Schreiner, J. Electrochem. Soc., submitted for publication Search PubMed.
  23. H. W. Werner and G. Garten, Rep. Progr. Phys., 1984, 47, 221 Search PubMed.
  24. R. E. Whan et al., American Society for Metals, Metals Park, OH, USA, 9th edn., Metals Handbook, vol. 10 Search PubMed.
  25. G. Stingeder, Anal. Chem., 1988, 60, 1524 CrossRef CAS.
  26. G. Binnig and H. Rohrer, Surf. Sci., 1983, 126, 236 CrossRef CAS.
  27. G. Binnig, C. Quate and C. Gerber, Phys. Ref. Lett., 1986, 56, 930 Search PubMed.
  28. I. Schmitz, M. Schreiner, G. Friedbacher and M. Grasserbauer, Anal. Chem., 1997, 69, 1012 CrossRef CAS.
  29. I. Schmitz, M. Schreiner, G. Friedbacher and M. Grasserbauer, Appl. Surf. Sci., 1997, 115, 190 CrossRef CAS.
  30. D. E. Newbury, Scanning, 1979, 3, 110 Search PubMed.
  31. M. Schreiner, G. Stingeder and M. Grasserbauer, Fresenius' Z. Anal. Chem., 1984, 319, 600 CAS.
  32. M. Schreiner, M. Grasserbauer and P. March, Fresenius' Z. Anal. Chem., 1988, 331, 428 CAS.
  33. M. Schreiner, J. Am. Ceram. Soc., 1989, 72, 1713 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.