Atmospheric pressure capacitively coupled plasma source for the direct analysis of non-conductive solid samples

(Note: The full text of this document is currently only available in the PDF Version )

Sorin D. Anghel, Tiberiu Frentiu, Emil A. Cordos, Alpar Simon and Adrian Popescu


Abstract

An atmospheric pressure capacitively coupled device for the rf sputtering and direct analysis by AES of non-conductive solid samples was developed. It operates at 13.56 MHz, with Ar flow rates lower than 1 l min–1 and rf input powers between 20 and 50 W. With the aim of studying the expulsion mechanism and determining the analytical performance, the following materials were used: ZnO with known content of trace elements (Si, Pb, Cd and Na); four andesite standards with certified contents of Pb, Cu and Cr; and a synthetic (laboratory made) andesite standard. The expulsion mechanism depends on the rf power. Below 38 W, the sputtering rate is nearly constant and the atomisation is produced only by sputtering. At powers higher than 38 W, thermal evaporation will be present in addition to rf sputtering. All measurements for evaluating the analytical performance were made at optimum working parameters (rf power=36 W, Ar flow rate=0.5 l min–1). The detection limits are 0.3, 0.7, 1.0 and 0.9 µg g–1 for Na, Pb, Si and Cd, respectively, in the ZnO matrix and 0.8, 1.0 and 0.5 µg g–1 for Pb, Cr and Cu, respectively, in the andesite matrix. The dynamic range for Pb is about three orders of magnitude. The relative standard deviations for Pb in the certified standards are between 1.7 and 12.7% and the recoveries compared with the certified values are between 95 and 104% for the concentration range 5.8-35.1 µg g–1.


References

  1. M. W. Blades, P. Banks, C. Gill, D. Huang, Ch. LeBlanc and D. Liang, IEEE Trans. Plasma Sci., 1090, 19, 1991 Search PubMed.
  2. W. W. Harrison, C. M. Barshick, J. A. Klinger, P. H. Ratliff and Y. Mei, Anal. Chem., 1990, 62, 943A CAS.
  3. D. C. Duckworth and R. K. Marcus, Anal. Chem., 1989, 61, 1879 CrossRef CAS.
  4. R. K. Marcus, T. R. Harville, Y. Mei and Ch. R. Shick, Anal. Chem., 1994, 66, 902A CAS.
  5. A. M. Pless, A. Croslyn, M. J. Gordon, B. W. Smith and J. D. Winefordner, Talanta, 1997, 44, 39 CrossRef CAS.
  6. W. R. L. Masamba, B. W. Smith and J. D. Winefordner, Appl. Spectrosc.., 1992, 46, 1741 CAS.
  7. D. Liang and M. W. Blades, Spectrochim. Acta, Part B, 1989, 44, 1049 CrossRef.
  8. S. D. Anghel, T. Frenţiu, A. M. Rusu, L. Bese and E. A. Cordoş, Fresenius' J. Anal. Chem., 1996, 355, 252 CAS.
  9. M. W. Blades, Spectrochim. Acta, Part B, 1994, 49, 47 CrossRef.
  10. S. D. Anghel, T. Frenţiu, A. Simon, E. Darvasi, A. M. Rusu and E. A. Cordoş, Fresenius' J. Anal. Chem., 1996, 355, 250 CAS.
  11. E. A. Cordoş, S. D. Anghel, T. Frenţiu and A. Popescu, J. Anal. At. Spectrom., 1994, 9, 635 RSC.
  12. T. Frenţiu, S. D. Anghel, A. M. Rusu, M. Ponta and E. A. Cordoş, Fresenius' J. Anal. Chem., 1996, 355, 254 CAS.
  13. E. A. Cordoş, T. Frenţiu, A. Fodor, M. Ponta, A. M. Rusu and S. Negoescu, ACH Models Chem., 1995, 132, 313 CAS.
  14. T. Frenţiu, S. D. Anghel, A. Simon, A. Popescu, A. M. Rusu, S. Negoescu and E. A. Cordoş, ACH Models Chem., in the press Search PubMed.
  15. T. Frenţiu, S. D. Anghel, A. Simon, A. Popescu and E. A. Cordoş, ACH Models Chem., in the press Search PubMed.
  16. E. Tătaru, S. D. Anghel and I. I. Popescu, Rev. Roum. Phys., 1991, 36, 29 Search PubMed.
  17. P. W. J. M. Boumans, Spectrochim. Acta, Part B, 1991, 46, 431 CrossRef.
  18. P. W. J. M. Boumans, J. C. Ivaldi and W. Slavin, Spectrochim. Acta, Part B, 1991, 46, 641 CrossRef.
  19. J. C. Miller and J. N. Miller, Statistics for Analytical Chemistry, Wiley, New York, 2nd edn., 1988, ch. 3, pp. 53–62 and ch. 5, pp. 101–115 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.