Detection of crystal lattice defects in microranges of copper by X-ray interferences

(Note: The full text of this document is currently only available in the PDF Version )

Siegfried Däbritz, Herwig Horn and Hanns Waltinger


Abstract

The lattice source interferences (LSI) or Kossel technique and the divergent beam X-ray interferences (DBI) or pseudo-Kossel technique are highly sensitive to the real structure in the microrange of the crystal lattice. Both methods complement each other, owing to their geometrically different diffraction regions. Mechanically ground and polished Cu single crystals with different crystallographic orientations ([100], [110], [621], [694]) and two polycrystalline Cu specimens were chemically etched stepwise with FeCl3·6H2O. After each etching time, divergent beam X-ray patterns of the crystals were taken and in some cases lattice source interferences pattern also. It was possible to observe the real structure as a function of the depth, because the information comes from a depth of about 2-5 µm for LSI and 50-100 µm for DBI. The DBI patterns show, for instance, for Cu [100], sharp interference lines from regions up to 40 µm deep. With increasing depth the crystal lattice reveals the real structure only and not the deformation effect caused by polishing.


References

  1. T. Imura, S. Weissmann and J. J. Slade, Acta Cryst., 1962, 15, 786 CrossRef CAS.
  2. T. Ellis, F. Nanni, A. Shier, S. Weissmann, G. E. Padawer and N. Hosokawa, J. Appl. Phys., 1964, 35, 3364.
  3. T. Fujiwara, X-ray Optics and Microanalysis, Orsay, 1965, pp. 621–633 Search PubMed.
  4. J. Schneider and H. Weik, Z. Angew. Phys., 1968, 14, 275 Search PubMed.
  5. D. J. Dingley and N. Razavizadeh, in Scanning Electron Microscopy, ed. I. L. O'Hare, SEM Inc., Illinois, 1981, vol. IV, p. 287 Search PubMed.
  6. N. Erben, P. Paufler, K. Löschke, S. Däbritz and K. Kleinstück, Phys. Status Solidi A:, 1981, 65, K1, 75 Search PubMed.
  7. N. Erben, P. Paufler, K. Löschke, S. Däbritz and K. Kleinstück, Phys. Status Solidi A:, 1982, 72, K1, 5 Search PubMed.
  8. A. Herenz, H.-J. Ullrich and S. Däbritz, Proc. Microsonde 1984, ed. A. Röder, S. Däbritz and L. Küchler, Physik. Gesell., East Germany, 1984, p. 203 Search PubMed.
  9. H.-J. Ullrich, A. Herenz, E. Friedrich, W. Schatt and Ch. Döring, Mikrochim. Acta, 1983, 1, 175 CAS.
  10. A. Herenz, H.-J. Ullrich, S. Däbritz, W. Schatt and E. Friedrich, 15. Metalltagung, Dresden, East Germany, 1984, Scientific Report No. 25, ZFW Dresden, p. 30.
  11. J. Henja, E. B. Radojewska, H. Szymanski and M. Wolcyrz, J. Scanning Electron Microsc. Relat. Methods, 1986, 8, 177 Search PubMed.
  12. H. R. Horn, E. P. Krautz, H. H. Waltinger and P. P. Warbichler, Z. Metallkd., 1987, 78, H.6, 417 Search PubMed.
  13. S. Däbritz, E. Langer and W. Hauffe, Fresenius' J. Anal. Chem., 1997, 358, 148 CrossRef CAS.
  14. A. Armigliato, D. J. Howard, R. Balboni, S. Frabboni and M. R. Caymax, Mikrochim. Acta, 1998, 15(Suppl.), 59 CAS.
  15. H.-J. Ullrich, S. Däbritz, W. Quellmalz and H. Schreiber, Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden, VEB Dt. Verlag für Grundstoffindustrie, Leipzig, 1982, vol. 31, pp. 7–50 Search PubMed.
  16. O. Brümmer, Mikroanalyse mit Elektronen- und Ionensonden, VEB Dt. Verlag für Grundstoffindustrie, Leipzig, 1978, p. 44 Search PubMed.
  17. M. V. Ardenne, Tabellen der Elektronenphysik, Ionenphysik und Übermikroskopie, Dt. Verlag der Wissenschaften, Berlin, 1956, vol. 1, p. 151f Search PubMed.
  18. S. Däbritz, H. Horn, K. Kleinstück, H. Waltinger and V. Hoffmann, Cryst. Res. Technol., 1986, 12, 1531.
  19. T. Tomov, Phys. Status Solidi A, 1986, 95, 397.
  20. T. Tomov, Phys. Status Solidi A, 1986, 98, 43.
  21. R. Theisen and D. Vollath, Tabellen der Massenschwäch- ungskoeffizienten von Röntgenstrahlen, Verlag Stahleisen, Düsseldorf, 1967 Search PubMed.
  22. E. Langer, R. Kurt and S. Däbritz, unpublished work.
  23. H.-J. Ullrich, S. Däbritz and A. Herenz, unpublished work.
Click here to see how this site uses Cookies. View our privacy policy here.