EPMA using low-energy (0.1-1.0 keV) X-rays-an historical perspective

(Note: The full text of this document is currently only available in the PDF Version )

V. D. Scott and G. Love


Abstract

Studies with the electron-probe microanalyser using low-energy (<1 keV) X-rays are reviewed with particular reference to analysis of the ultra-light elements (atomic number Z<11). The paper begins by describing the historical development of methods for measuring low-energy X-ray spectra and goes on to show that minimum detection levels achieved for ultra-light elements are now comparable to those for heavier elements, in ideal circumstances about 100 ppm using wavelength-dispersive spectrometry and about 1000 ppm with energy-dispersive spectrometry. Regarding quantitative analysis, the correction models developed during the 1960s worked fairly well in most cases but, because they were based upon an X-ray depth distribution function of limited validity, were unsatisfactory for the ultra-light elements. Since then, advances made using empirical curve-fitting methods to derive this function have led to accuracies of a few per cent. relative, close to figures for heavier elements, any limitations being most likely associated with the accuracy of the mass absorption coefficients used rather than the models themselves. The merit of utilising low-energy radiation for surface analysis is discussed and it is shown that, by employing a low-voltage electron probe to restrict X-ray excitation to surface layers and recording low-energy X-ray emission, surface films down to about 1 nm thickness may be investigated. Finally, examples are given to show the value of studying the shape of low-energy spectra as a means of identifying the phase of microstructural features.


References

  1. R. Castaing, PhD Thesis, University of Paris, 1951.
  2. D. J. Fabian, L. M. Watson and C. A. W. Marshall, Rep. Prog. Phys., 1971, 34, 601 CrossRef CAS.
  3. J. B. Nicholson and M. F. Hasler, Adv. X-ray Anal., 1966, 9, 420 Search PubMed.
  4. J. E. Holliday, in The Electron Microprobe, ed. T. D. McKinley, K. F. J. Heinrich and D. B. Wittry, Wiley, New York, 1966, pp. 3–22 Search PubMed.
  5. A. I. Kozlenkov, Yu I. Belov, V. G. Bogdanov and A. I. Shulgin, in Proceedings of the Fifth Conference Mikrosonde, ed. A. Roder, L. Kuchler and S. Dabritz, Physics Society of the DDR, Leipzig, 1981, pp. 47–50 Search PubMed.
  6. R. M. Dolby, Proc. Phys. Soc., 1959, 73, 81 Search PubMed.
  7. V. E. Cosslett and P. Duncumb, Nature (London), 1956, 177, 1172.
  8. G. V. T. Ranzetta and V. D. Scott, Br. J. Appl. Phys., 1964, 15, 263 Search PubMed.
  9. W. L. Baun and E. W. White, Anal. Chem., 1969, 41, 831 CrossRef CAS.
  10. P. S. Ong, in The Electron Microprobe, ed. T. D. McKinley, K. F. J. Heinrich and D. B. Wittry, Wiley, New York, 1966, pp. 43–57 Search PubMed.
  11. B. L. Henke, in X-Ray Optics and Microanalysis, ed. H. H. Pattee, V. E. Cosslett and A. Engstrom, Academic Press, New York, 1963, pp. 157–172 Search PubMed.
  12. A. K. Baird and D. H. Zenger, Adv. X-Ray Anal., 1965, 9, 487 Search PubMed.
  13. C. A. Andersen, in The Electron Microprobe, ed. T. D. McKinley, K. F. J. Heinrich and D. B. Wittry, Wiley, New York, 1966, pp. 58–74 Search PubMed.
  14. R. D. T. Whittle and V. D. Scott, Met. Technol., 1984, 11, 292 Search PubMed.
  15. J. B. Dinklage, J. Appl. Phys., 1967, 38, 3781 CAS.
  16. G. Love and V. D. Scott, in EMAG 87, ed. L. M. Brown, Institute of Physics Conference Series, No. 90, Institute of Physics, Bristol, 1987, pp. 349–352 Search PubMed.
  17. N. C. Barbi, A. Sandborg, J. Russ and C. Soderquist, in IITRI/SEM/74, ed. O. Johari, Illinois Technology Research Institute, Illinois, 1974, pp. 151–158 Search PubMed.
  18. J. C. Russ, G. C. Baerwalt and W. R. McMillan, X-ray Spectrom., 1976, 5, 212 CAS.
  19. D. J. Bloomfield, G. Love and V. D. Scott, X-ray Spectrom., 1985, 14, 139 CAS.
  20. R. A. Sareen, in X-Ray Spectrometry in Electron Beam Instruments, ed. D. B. Williams, J. I. Goldstein and D. E. Newbury, San Francisco Press, San Francisco, 1995, pp. 33–51 Search PubMed.
  21. R. Castaing and J. Descamps, J. Phys. Radium, 1955, 16, 304 Search PubMed.
  22. S. J. B. Reed, Br. J. Appl. Phys., 1965, 16, 913 Search PubMed.
  23. J. Philibert, in X-Ray Optics and X-Ray Microanalysis, ed. H. H. Patee, V. E. Cosslett and A. Engstrom, Academic Press, New York, 1963, pp. 379–392 Search PubMed.
  24. D. M. Poole, in Quantitative Electron Probe Microanalysis, ed. K. F. J. Heinrich, National Bureau of Standards Publication No. 298, US Department of Commerce, Washington, DC, 1968, pp. 93–131 Search PubMed.
  25. P. Duncumb and S. J. B. Reed, in Quantitative Electron Probe Microanalysis, ed. K. F. J. Heinrich, National Bureau of Standards Publication No. 298, US Department of Commerce, Washington, DC, 1968, pp. 133–154 Search PubMed.
  26. J. Philibert and R. Tixier, in Quantitative Electron Probe Microanalysis, ed. K. F. J. Heinrich, National Bureau of Standards Publication No. 298, US Department of Commerce, Washington, DC, 1968, pp. 13–33 Search PubMed.
  27. G. Love, M. G. C. Cox and V. D. Scott, J. Phys. D: Appl. Phys., 1978, 11, 7 CrossRef CAS.
  28. G. Love, M. G. C. Cox and V. D. Scott, J. Phys. D: Appl. Phys., 1975, 8, 1686 CrossRef CAS.
  29. G. Love, M. G. C. Cox and V. D. Scott, J. Phys. D: Appl. Phys., 1974, 7, 2131 CrossRef CAS.
  30. G. F. Bastin and H. J. M. Heijligers, X-Ray Spectrom., 1986, 15, 135 CAS.
  31. R. H. Packwood and J. D. Brown, X-Ray Spectrom., 1981, 10, 138 CAS.
  32. G. F. Bastin, F. J. J. van Loo and H. J. M. Heijligers, Scanning, 1986, 8, 45 Search PubMed.
  33. J.-L. Pouchou and F. Pichoir, in Electron Probe Quantitation, ed. K. F. J. Heinrich and D. E. Newbury, Plenum Press, New York, 1991, pp. 31–75 Search PubMed.
  34. V. D. Scott and G. Love, in Electron Probe Quantitation, ed. K. F. J. Heinrich and D. E. Newbury, Plenum Press, New York, 1991, pp. 19–30 Search PubMed.
  35. J.-L. Pouchou and F. Pichoir, in Electron Microscopy and Analysis, ed. G. W. Bailey, J. Bentley and J. A. Small, San Francisco Press, San Francisco, 1992, pp. 1650–1651 Search PubMed.
  36. G. F. Bastin and H. J. M. Heijligers, Quantitative Electron Probe Microanalysis of Carbon in Binary Carbides, University of Technology, Eindhoven, 1985 Search PubMed.
  37. G. F. Bastin and H. J. M. Heijligers, Quantitative Electron Probe Microanalysis of Boron in Binary Borides, University of Technology, Eindhoven, 1986 Search PubMed.
  38. G. F. Bastin and H. J. M. Heijligers, Quantitative Electron Probe Microanalysis of Nitrogen, University of Technology, Eindhoven, 1988 Search PubMed.
  39. G. F. Bastin and H. J. M. Heijligers, Quantitative Electron Probe Microanalysis of Oxygen, University of Technology, Eindhoven, 1989 Search PubMed.
  40. P. Willich and R. Bethke, Mikrochim. Acta, Suppl., 1996, 13, 631 Search PubMed.
  41. M. G. C. Cox, B. McEnaney and V. D. Scott, Philos. Mag., 1974, 29, 585 Search PubMed.
  42. H. E. Bishop, J. Phys. D: Appl. Phys., 1974, 7, 2009 CrossRef CAS.
  43. G. Love and V. D. Scott, J. Phys. D: Appl. Phys., 1978, 11, 1369 CrossRef CAS.
  44. P. Willich and K. Schiffman, Mikrochim. Acta, Suppl., 1992, 12, 221 Search PubMed.
  45. J.-L. Pouchou and F. Pichoir, in X-Ray Optics and Microanalysis, ed. J. D. Brown and R. H. Packwood, University of Western Ontario Press, London, Ontario, 1987, pp. 249–253 Search PubMed.
  46. P. Willich, Mikrochim. Acta, Suppl., 1992, 12, 1–18 Search PubMed.
  47. R. H. Packwood, G. Remond and J. D. Brown, in X-Ray Optics and Microanalysis, ed. J. D. Brown and R. H. Packwood, University of Western Ontario Press, London, Ontario, 1987, pp. 274–280 Search PubMed.
  48. S. Cvikevich and C. Pihl, in Microbeam Analysis—1979, ed. D. E. Newbury, San Francisco Press, San Francisco, 1979, pp. 39–42 Search PubMed.
  49. G. F. Bastin, J. M. Dijkstra, H. J. M. Heijligers and D. Klepper, Mikrochim. Acta, Suppl., 1992, 12, 93 Search PubMed.
  50. J.-L. Pouchou, Mikrochim. Acta, Suppl., 1996, 13, 39 Search PubMed.
  51. A. J. Campbell and R. Gibbons, in The Electron Microprobe, ed. T. D. McKinley, K. F. J. Heinrich and D. B. Wittry, Wiley, New York, 1966, pp. 75–82 Search PubMed.
  52. G. Love, V. D. Scott, N. M. T. Dennis and L. Laurenson, Scanning, 1981, 4, 32 Search PubMed.
  53. D. W. Fischer, Adv. X-Ray Anal., 1970, 13, 159 Search PubMed.
  54. W. L. Baun and J. S. Solomon, Vacuum, 1971, 21, 165 CrossRef CAS.
  55. T. Shiraiwa, N. Fujino and J. Murayama, in X-Ray Optics and Microanalysis, ed. G. Shinoda, K. Kohra and T. Ishinokawa, Tokyo University Press, Tokyo, 1972, pp. 213–218 Search PubMed.
  56. S. Jasienska, in X-Ray Optics and Microanalysis, ed. S. Jasienska and L. J. Maksymowicz, Academy of Mining and Metallurgy, Krakow, 1989, pp. 635–640 Search PubMed.
  57. H. Kucha, in X-Ray Optics and Microanalysis, ed. S. Jasienska and L. J. Maksymowicz, Academy of Mining and Metallurgy, Krakow, 1989, pp. 652–655 Search PubMed.
  58. G. Remond, C. Gilles, M. Fialin, R. Marinenko, R. Myklebust and D. Newbury, Mikrochim. Acta, Suppl., 1996, 13, 61 Search PubMed.
  59. S. M. Bleay, A. R. Chapman, G. Love and V. D. Scott, J. Mater. Sci., 1992, 27, 5389 CAS.
  60. V. D. Scott and G. Love, X-Ray Spectrom., 1996, 25, 286 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.