Comparison of the probability density functions for the ranges of electrons, positrons and protons

(Note: The full text of this document is currently only available in the PDF Version )

Andrzej Kuczumow


Abstract

The probability density functions Φ(ρz) for electrons, positrons and protons as well as for the ionizations [φ(ρz)] caused in the samples by the primary beams of the above mentioned particles have been studied. All of the dependencies obey Weibullean statistics. It has been shown that the probability density functions for the distribution of electrons as well as for positrons can be expanded from the conventional energy region of tens of keV to the region even closer to 1 MeV. The only difference is the disappearance of the surface charging in the high-energy region. A similar Φ(ρz) curve has been shown for the first time also for protons. The family of the ionization curves φ(ρz) seems to tend to be enveloped by the respective probability density curve Φ(ρz) for the distribution of the charged particle beam of the given energy. This has been shown for different tracers in a copper matrix.Given the probability density functions, one can easily select the correct solutions for the simulations of the particle beam attenuation in ambiguous situations; e.g., for 10 keV positrons penetrating a copper matrix it has been shown that the only proper energy-loss functions used in the simulations were those taking 11 and not 2 valence electrons into account.


References

  1. J. Lindhard, M. Scharff and H. E. Schiott, Mat. Fys. Medd.-K. Dan. Vidensk. Selsk., 1963, 33, 14 Search PubMed.
  2. H. H. Anderson and J. F. Ziegler, Hydrogen Stopping Power and Ranges in all Elements, Pergamon Press, New York, 1977 Search PubMed.
  3. J. F. Ziegler, Helium Stopping Power and Ranges in all Elements, Pergamon Press, New York, 1977 Search PubMed.
  4. V. E. Cosslett and R. N. Thomas, Br. J. Appl. Phys., 1964, 15, 235, 883, 1283 Search PubMed.
  5. V. E. Cosslett and R. N. Thomas, Br. J. Appl. Phys., 1965, 16, 779 Search PubMed.
  6. H. H. Seliger, Phys. Rev., 1955, 100, 1029 CrossRef CAS.
  7. A. P. Mills, Jr. and R. J. Wilson, Phys. Rev. A, 1982, 26, 490.
  8. L. Reimer and D. Stelter, Scanning, 1986, 8, 265 Search PubMed.
  9. J. Baró, J. Sempau, J. M. Fernández-Varea and F. Salvat, Nucl. Instrum. Methods, 1995, B100, 31 Search PubMed.
  10. K. Kotera, M. Murata and K. Nagami, J. Appl. Phys., 1981, 52, 997 CrossRef.
  11. S. Valkealahti and R. M. Nieminen, Appl. Phys. A, 1983, 32, 95 Search PubMed.
  12. S. Valkealahti and R. M. Nieminen, Appl. Phys. A, 1984, 35, 51 Search PubMed.
  13. K. O. Jensen and A. B. Walker, Surf. Sci., 1993, 292, 83 CrossRef CAS.
  14. Z.-J. Ding and R. Shimizu, Scanning, 1996, 18, 92 Search PubMed.
  15. P. Lenard, Ann. Phys. (Leipzig), 1895, 56, 255 Search PubMed.
  16. P. Lenard, Ann. Phys. (Leipzig), 1903, 112, 449 Search PubMed.
  17. J. Philibert, in Proc 3rd Int. Symp. X-Ray Optics and Microanalysis, ed. H. H. Pattee, V. E. Cosslett and A. Engstroem, Academic Press, New York, 1963, p. 379 Search PubMed.
  18. A. Makhov, Sov. Phys.-Solid State, 1960, 2, 1934, 1942, 1945 Search PubMed.
  19. A. R. Büchner and W. Pitsch, Zeit. Metallkunde, 1971, 62, 392 Search PubMed.
  20. L. Parobek and J. D. Brown, X-Ray Spectrom., 1978, 7, 26 CAS.
  21. W. Weibull, J. Appl. Mech., 1951, 18, 293.
  22. W. T. Eadie, D. Drijard, F. E. James, B. Sadoulet and M. Roos, Statistical Methods in Experimental Physics, North Holland, Amsterdam, 1982 Search PubMed.
  23. J. D. Brown and L. Parobek, in Proceed. 6th Int. Conf. X-Ray Optics and Microanalysis, ed. G. Shinoda, K. Ohra and T. Ichinokawa, University of Tokio Press, Tokio, 1972, p. 163 Search PubMed.
  24. L. J. Christensen, J. M. Khan and W. F. Brunner, Rev. Sci. Instrum., 1967, 38, 20 CAS.
  25. C. Klatt, W. Ensinger, H. Martin, G. K. Wolf, P. Oberschachtsiek, D. Niemann and S. Kalbitzer, Nucl. Instrum. Methods, 1992, B68, 277 Search PubMed.
  26. V. J. Ghosh and G. C. Aers, Phys. Rev. B, 1995, 51, 45 CrossRef CAS.
  27. A. Kuczumow, J. A. Helsen and R. Wouters, Spectrochim. Acta, 1992, 47B, 971 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.