Analyses of petrified wood by electron, X-ray and optical microprobes

(Note: The full text of this document is currently only available in the PDF Version )

Andrzej Kuczumow, Bart Vekemans, Olivier Schalm, Walter Dorrin, Pierre Chevallier, Philippe Dillmann, Chul-Un Ro, Koen Janssens and René Van Grieken


Abstract

Samples of petrified wood of different origins were analyzed by the use of the electron microprobe, capillary X-ray fluorescence microprobe, synchrotron capillary X-ray microprobe and optical microscope, applied in a microprobe manner. The main attention was given to the investigation of the ring structure of the petrified wood and the comparison of this with the ring structure of the living trees analyzed by much the same methods. The continuous X-radiation, applied in a microprobe manner, the distribution of the gray-scale representation of the secondary electron intensities and the characteristic X-ray signals, mainly from the light elements, were registered by the use of the electron microprobe method. The X-ray capillary microprobe detected the Rayleigh and Compton signals, scattered from microareas of the samples, and the characteristic X-ray signals, mainly from the heavier elements. In the synchrotron-based capillary microanalytical measurements, one of the most important results was achieved by the microprobe application of scattered synchrotron radiation. The emission and scattering results were supplemented by transmission measurements, where possible. All the methods proved to be complementary in the analysis of such periodic structures as tree rings. Both capillary microprobes were much more efficient in the detection of heavy elements and penetrated deeper than the traditional electron microprobe. Careful analysis of different signals indicated that some samples of petrified wood in the authors' possession, composed of silica of variable density, are the chemical negatives of the primordial living wood. This is the first such observation in the literature. Microdiffraction studies of the samples proved that polycrystalline α-quartz was the main matrix component of all these samples. The elemental analysis of the petrified wood gives important indications about the petrification processes. Comparison of the particular ring structure of the petrified wood with the ring structure of living trees shows great similarities. The widths of rings, density variations and density maxima are easily readable from the microanalysis of petrified wood. These parameters potentially can be exploited for the investigation of the biological, chemical, chronological and climatic information included in the fossilized tissues.


References

  1. Methods of Dendrochronology, ed. E. R. Cook and L. A. Kairiukstisk, Kluwer, Dordrecht, 1990 Search PubMed.
  2. F. H. Schweingruber, Tree Rings Basics and Applications of Dendrochronology, Kluwer, Dordrecht, 1988 Search PubMed.
  3. P. I. Kuniholm, B. Kromer, S. W. Manning, M. Newton, C. E. Latini and M. J. Bruce, Nature (London), 1996, 381, 780 CAS.
  4. C. Renfrew, Nature (London), 1996, 381, 733 CAS.
  5. H. J. Bruins and J. van der Plicht, Nature (London), 1996, 382, 213 CAS.
  6. J. E. Francis, Palaentology, 1986, 29, 665 Search PubMed.
  7. H. C. Fritts, Tree Rings and Climate, Academic Press, London, 1976 Search PubMed.
  8. H. C. Fritts, Reconstructing Large-Scale Climatic Patterns from Tree-Ring Data, University of Arizona Press, Tucson, AZ, 1991 Search PubMed.
  9. K. R. Briffa, P. D. Jones, F. H. Schweingruber and T. J. Osborn, Nature (London), 1998, 393, 450 CrossRef CAS.
  10. J. W. Back, J. Recy, F. Taylor, R. L. Edwards and G. Cabioch, Nature (London), 1997, 385, 705 CrossRef.
  11. J. J. Labrecque and P. A. Rosales, Spectrochim. Acta, Part B, 1997, 52, 1645 CrossRef.
  12. W. Beck, Science, 1998, 279, 1003 CrossRef CAS.
  13. M. K. Gagan, L. K. Ayliffe, D. Hopley, J. A. Cali, G. E. Mortimer, J. Chappell, M. T. McCulloch and M. J. Head, Science, 1998, 279, 1014 CrossRef CAS.
  14. I. R. Quitmyer, D. S. Jones and W. S. Arnold, J. Archeol. Sci., 1997, 24, 825 Search PubMed.
  15. S. R. Hart and J. Blusztajn, Science, 1998, 280, 883 CrossRef CAS.
  16. G. M. Thompson, D. N. Lumsden, R. L. Walker and J. A. Carter, Geochim. Cosmochim. Acta, 1975, 39, 1211 CrossRef CAS.
  17. P. Holden, University of California, Santa Cruz, personal communication, 1998.
  18. I. J. Winograd, T. B. Coplen, J. M. Landwehr, A. C. Riggs, K. R. Ludwig, B. J. Szabo, P. T. Kolesar and K. M. Revesz, Science, 1992, 258, 255 CAS.
  19. K. R. Ludwig, K. R. Simmons, B. J. Szabo, I. J. Winograd, J. M. Landwehr, A. C. Riggs and R. J. Hoffman, Science, 1992, 258, 284 CAS.
  20. R. L. Edwards, H. Cheng, M. T. Murrell and S. J. Goldstein, Science, 1997, 276, 782 CrossRef CAS.
  21. J. M. Vadillo, I. Vadillo, F. Carasco and J. J. Laserna, Fresenius' J. Anal. Chem., 1998, 361, 119 CrossRef CAS.
  22. R. B. Alley, D. A. Meese, C. A. Shuman, A. J. Gow, K. C. Taylor, P. M. Grootes, J. W. C. White, M. Ram, E. D. Waddington, P. A. Mayewski and G. A. Zielinski, Nature (London), 1993, 362, 527 CrossRef.
  23. W. Dansgaard, S. Jjohnsen, H. B. Clausen, D. Dahl-Jensen, N. S. Gundestrup, C. U. Hammer, C. S. Hvidberg, J. P. Steffensen, A. E. Sveinbjörnsdottir, J. Jouzel and G. Bond, Nature (London), 1993, 364, 218 CrossRef.
  24. G. A. Zielinski and M. S. Germani, J. Archeol. Sci., 1998, 25, 279 Search PubMed.
  25. D. W. Oppo, J. F. McManus and J. L. Cullen, Science, 1998, 279, 1335 CrossRef CAS.
  26. H. Schulz, U. von Rad and H. Erlenkeuser, Nature (London), 1998, 393, 54 CAS.
  27. A. Kuczumow, A. Rindby and S. Larsson, X-Ray Spectrom., 1995, 24, 19 CAS.
  28. K. Pernestål, B. Jonsson and J. E. Hällgren, Nucl. Instrum. Methods, Sect. B, 1993, 75, 326 Search PubMed.
  29. S. A. E. Johansson, Analyst, 1992, 117, 259 RSC.
  30. G. Loevestam, E. M. Johansson, S. Johansson and J. Pallon, Ambio, 1990, 19, 87 Search PubMed.
  31. A. Kuczumow, S. Larsson and A. Rindby, X-Ray Spectrom., 1996, 25, 147 CAS.
  32. A. M. Keller and M. S. Hendrix, Palaios, 1997, 12, 282 Search PubMed.
  33. G. T. Creber and W. G. Chaloner, Palaeogeogr. Palaeoclimatol. Palaeoecol., 1985, 52, 35 CrossRef.
  34. S. Carroll, E. Mroczek, M. Alai and M. Ebert, Geochim. Cosmochim. Acta, 1998, 62, 1379 CrossRef CAS.
  35. H. Kumagai and Y. Fukao, Geophys. Res. Lett., 1992, 19, 1859.
  36. H. Hicks, US Pat., 4612050, 1986 Search PubMed.
  37. G. Scurfield and E. R. Segnit, Sediment. Geol., 1984, 39, 149 CAS.
  38. R. W. Drum, Science, 1968, 161, 175.
  39. J. H. Oehler, Geol. Soc. Am. Bull., 1976, 87, 1143 Search PubMed.
  40. A. C. Sigleo, Geochim. Cosmochim. Acta, 1978, 42, 1397 CAS.
  41. C. Stein, J. Sediment. Petrol., 1982, 52, 1277 Search PubMed.
  42. K. Janssens, L. Vincze, J. Rubio and F. Adams, J. Anal. At. Spectrom., 1994, 9, 151 RSC.
  43. K. Janssens, B. Vekemans, L. Vincze, F. Adams and A. Rindby, Spectrochim. Acta, Part B, 1996, 51, 1661 CrossRef.
  44. P. Chevallier, P. Dhez, F. Legrand, A. Erko, Y. Agafonov, L. A. Panchenko and A. Yakshin, J. Trace Microprobe Technol., 1996, 14, 517 Search PubMed.
  45. P. Dillman, P. Populus, P. Chevallier, P. Fluzin, G. Beranger and A. Firsov, J. Trace Microprobe Technol., 1997, 15, 251 Search PubMed.
  46. G. Andermann and J. W. Kemp, Anal. Chem., 1958, 30, 1306 CrossRef CAS.
  47. H. A. van Sprang and M. H. J. Bekkers, X-Ray Spectrom., 1998, 27, 31 CAS.
  48. P. M. Van Dyck and R. E. Van Grieken, Anal. Chem., 1980, 52, 1859 CrossRef CAS.
  49. M. F. Araùjo, P. Van Espen and R. Van Grieken, X-Ray Spectrom., 1990, 19, 29 CAS.
  50. S. A. E. Johansson, Endeavour, 1989, 13, 48 CAS.
  51. A. Kuczumow, B. Vekemans, M. Claes, O. Schalm, L. Vincze, W. Dorriné, K. Gysels and R. Van Grieken, X-Ray Spectrom., accepted for publication Search PubMed.
  52. G. Bond and R. Lotti, Science, 1995, 267, 1005 CAS.
  53. M. E. Raymo, K. Ganley, S. Carter, D. W. Oppo and J. McManus, Nature (London), 1998, 392, 699 CrossRef CAS.
  54. D. W. Stahle, M. K. Clevealand, D. B. Blanton, M. D. Therell and D. A. Gay, Science, 1998, 280, 564 CrossRef CAS.
  55. S. L. de Silva and G. A. Zielinski, Nature (London), 1998, 393, 455 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.