Microwave digestion of plant and grain standard reference materials in nitric and hydrofluoric acids for multi-elemental determination by inductively coupled plasma mass spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

Xinbang Feng, Shaole Wu, Angela Wharmby and Adolph Wittmeier


Abstract

A microwave-assisted HNO3-HF digestion system was explored for the total dissolution of biological plant and grain materials followed by multi-elemental determination using ICP-MS, in order to improve the low recoveries of several elements observed in a previous study using a microwave-assisted nitric acid digestion system. NIST standard reference materials (SRMs), including Apple Leaves (1515), Peach Leaves (1547), Wheat Flour (1567a), Rice Flour (1568a), Tomato Leaves (1573) and Pine Needles (1575), were analyzed. Approximately 0.5 g of sample was digested in 5 ml of HNO3 and 0.1 ml of HF, with or without a subsequent digestion stage with boric acid. The matrix effect for boron was evaluated for an ICP-MS system and signal enhancement was observed for all the elements tested. Potential spectral interferences in ICP-MS with HNO3-HF, boron and biological matrices are discussed and the spectral interferences on Co, As and Se are tabulated. The ICP-MS system was calibrated using external standards prepared in undigested reagent blanks with In as an internal standard. It was found that with a low but sufficient amount of HF in the digestion, the possible precipitation of metal fluorides in the digestate (without boric acid) was not significant. The recoveries for some silicon-bound elements, such as Al, Co, Cr, Ni, Th, U and V, were significantly improved compared with those from digestions with HNO3 alone. Using the HNO3-HF digestion procedure, the ICP-MS results for 30 elements, Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sr, Th, Ti, Tl, U, V and Zn, agreed well with the certified values in leaf and grain SRMs. The recoveries were mostly within the range 85-115%. Hence, the use of boric acid in the digestion was not necessary, which simplified the procedure, minimized the content of the total dissolved solids in solution for ICP-MS analysis and allowed the determination of boron.


References

  1. S. Wu, X. Feng and A. Wittmeier, J. Anal. At. Spectrom., 1997, 12, 797 RSC.
  2. B. Madeddu and A. Rivoldini, At. Spectrosc., 1996, 17, 148 CAS.
  3. K. Shiraishi, Y. Takacu, K. Yoshimizu, Y. Igarashi, K. Masuda, J. F. McInroy and G. Tanaka, J. Anal. At. Spectrom., 1991, 6, 335 RSC.
  4. A. Krushevska, A. Lásztity, M. Kotrebai and R. M. Barnes, J. Anal. At. Spectrom., 1996, 11, 343 RSC.
  5. L. Xu and W. Shen, Fresenius' J. Anal. Chem., 1989, 333, 108 CAS.
  6. C. S. E. Papp and L. B. Fischer, Analyst, 1987, 112, 337 RSC.
  7. L. B. Fischer, Anal. Chem., 1986, 58, 261 CrossRef CAS.
  8. P. J. Lamothe, T. L. Fries and J. J. Consul, Anal. Chem., 1986, 58, 1881 CrossRef CAS.
  9. R. A. Nadkarni, Anal. Chem., 1984, 56, 2233 CrossRef CAS.
  10. S. Wu, Y. Zhao, X. Feng and A. Wittmeier, J. Anal. At. Spectrom., 1996, 11, 287 RSC.
  11. C. F. Wang, W. H. Chen, M. H. Yang and P. C. Chiang, Analyst, 1995, 120, 1681 RSC.
  12. L. M. Jalkanen and E. K. Häsänen, J. Anal. At. Spectrom., 1996, 11, 365–369 RSC.
  13. C. Vandecasteele, H. Vanhoe and R. Dams, J. Anal. At. Spectrom., 1993, 8, 781 RSC.
  14. G. Horlick, Spectroscopy, 1992, 7, 22 Search PubMed.
  15. S. H. Tan and G. Horlick, J. Anal. At. Spectrom., 1987, 2, 745 RSC.
  16. M. A. Vaughan and G. Horlick, J. Anal. At. Spectrom., 1989, 4, 45 RSC.
  17. D. Beauchemin, J. W. McLaren and S. S. Berman, Spectrochim Acta, Part B, 1987, 42, 467 CrossRef.
  18. J. J. Thompson and R. S. Houk, Appl. Spectrosc., 1987, 41, 801 CAS.
  19. G. R. Gillson, D. J. Douglas, J. E. Fulford, K. W. Halligan and S. D. Tanner, Anal. Chem., 1988, 60, 1472 CrossRef.
  20. S. J. Stotesbury, J. M. Pickering and M. A. Grifferty, J. Anal. At. Spectrom., 1989, 4, 457 RSC.
  21. X. Feng and G. Horlick, J. Anal. At. Spectrom., 1994, 9, 823 RSC.
  22. I. Rodushkin, T. Ruth and D. Klockare, J. Anal. At. Spectrom., 1998, 13, 159 RSC.
  23. M. A. Vaughan and G. Horlick, Appl. Spectrosc., 1986, 40, 434 CAS.
  24. H. Vanhoe, J. Goossens, L. Moens and R. Dams, J. Anal. At. Spectrom., 1994, 9, 177 RSC.
  25. Y. Shao and G. Horlick, Appl. Spectrosc., 1991, 45, 143 CAS.
  26. M. A. Vaughan and D. M. Templeton, Appl. Spectrosc., 1990, 44, 1685 CAS.
  27. Compilation of Elemental Concentration Data for NBS Clinical, Biological, Geological, and Environmental Standard Reference Materials, National Bureau of Standards, Gaithersburg, MD, 1987 Search PubMed.
  28. S. Evans and U. Krähenbühl, J. Anal. At. Spectrom., 1994, 9, 1249 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.