Analysis of soil and sediment samples by laser ablation inductively coupled plasma mass spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

Scott A. Baker, Melody Bi, Ricardo Q. Aucelio, Benjamin W. Smith and James D. Winefordner


Abstract

The analysis of soil and sediment samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was studied. Solution-based calibration was used for the quantification of trace elements in these samples. In most cases, the measured concentrations were within ±20% of the certified values using 60Ni or 107Ag as the internal standard. Measurements with Ag were carried out to investigate whether an internal standard could be spiked into soils for quantification purposes. The influence of particle size on the applicability of sample spiking was briefly studied, and it was demonstrated that particle size could significantly influence measurements if only the surface constituents of the particle were ablated. Use of 43Ca or 44Ca as an internal standard produced poorer results owing to interferences at these masses. In some cases, such as with Sr, Ba, Y and Rb, the measured concentrations were low by a factor of 2-3. This could be remedied by using one of these elements as an internal standard for the others. The effects of elemental speciation, organic content and particle size were investigated. Elemental speciation and organic content of the soils did not appear to significantly affect the LA-ICP-MS measurements. Particle size, however, was found to influence the precision and sensitivity of the measurements. Samples with smaller particle sizes yielded higher signal levels and better precision.


References

  1. J. C. Van Loon, Selected Methods of Trace Metal Analysis: Biological and Environmental Samples, Wiley, New York, 1985 Search PubMed.
  2. S. M. Pyle, J. M. Nocerino, S. N. Deming, J. A. Palasota, J. M. Palasota, E. L. Miller, D. C. Hillman, C. A. Kuharic, W. H. Cole, P. M. Fitzpatrick, M. A. Watson and K. D. Nichols, Environ. Sci. Technol., 1996, 30, 204 CrossRef.
  3. C. J. Warren, B. Xing and M. J. Dudas, Can. J. Soil. Sci., 1990, 70, 617 Search PubMed.
  4. G. Galbacs, F. Vanhaecke, L. Moens and R. Dams, Microchem. J., 1996, 54, 272 CrossRef CAS.
  5. M. J. Liaw and S. J. Jiang, J. Anal. At. Spectrom., 1996, 11, 555 RSC.
  6. J. Teng, C. M. Barshick, D. C. Duckworth, S. J. Morton, D. H. Smith and F. L. King, Appl. Spectrosc., 1995, 49, 1361 CAS.
  7. C. A. Mahan, J. Anal. At. Spectrom., 1997, 12, 247 RSC.
  8. S. J. Goldstein, Environ. Sci. Technol., 1996, 30, 2318 CrossRef CAS.
  9. R. Barbini, F. Colao, R. Fantoni, A. Palucci, S. Ribezzo, H. J. L. van der Steen and M. Angelone, Appl. Phys. B, 1997, 65, 101 CrossRef.
  10. K. Y. Yamamoto, D. A. Cremers, M. J. Ferris and L. E. Foster, Appl. Spectrosc., 1996, 50, 222 CAS.
  11. A. S. Eppler, D. A. Cremers, D. D. Hickmott, F. J. Ferris and A. C. Koskelo, Appl. Spectrosc., 1996, 50, 1175 CAS.
  12. S. F. Durrant and N. I. Ward, Fresenius' J. Anal. Chem., 1993, 345, 512 CrossRef CAS.
  13. E. Hoffmann, C. Lüdke and H. Stephanowitz, Fresenius' J. Anal. Chem., 1996, 355, 900.
  14. X. Guo and F. E. Lichte, Analyst, 1995, 120, 2707 RSC.
  15. S. Chenery and J. M. Cook, J. Anal. At. Spectrom., 1993, 8, 299 RSC.
  16. E. F. Cromwell and P. Arrowsmith, Anal. Chem., 1995, 67, 131 CrossRef CAS.
  17. S. A. Baker, M. J. Dellavecchia, B. W. Smith and J. D. Winefordner, Anal. Chim. Acta, 1997, 355, 113 CrossRef CAS.
  18. J. W. Olesik, Anal. Chem., 1996, 68, 469A CAS.
  19. Handbook of Inductively Coupled Plasma Mass Spectrometry, ed. K. E. Jarvis, A. L. Gray and R. S. Houk, Blackie, Glasgow, 1992 Search PubMed.
  20. M.-A. Vaughan and G. Horlick, J. Anal. At. Spectrom., 1989, 4, 45 RSC.
  21. P. Allain, L. Jaunault, Y. Mauras, J.-M. Mermet and T. Delaporte, Anal. Chem., 1991, 63, 1497 CrossRef CAS.
  22. H. P. Longerich, J. Anal. At. Spectrom., 1989, 4, 665 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.