Evaluation of a high-pressure, high-temperature microwave digestion system

(Note: The full text of this document is currently only available in the PDF Version )

Keith E. Levine, James D. Batchelor, Charles B. Rhoades Jr. and Bradley T. Jones


Abstract

A high-pressure, high-temperature focused microwave digestion system was evaluated and compared with a conventional, closed-vessel digestion system. A suite of 18 test elements was determined in six Standard Reference Materials (Peach Leaves, Orchard Leaves, Oyster Tissue, Bovine Liver, Bituminous Coal, and River Sediment) by inductively coupled plasma atomic emission spectrometry and electrothermal atomic absorption spectrometry. Observation of the graphite furnace background absorbance for the digestates, and their high-performance liquid chromatograms, demonstrate that the high-pressure, high-temperature system results in a more complete destruction of the sample matrix. The high-temperature system also shows higher accuracy for the test metals in the reference materials (average error 7.1%) than the conventional system (11.8%). Finally, the high-temperature system has a per-sample analysis time (7.5 min) that is 10 min faster than the conventional system. On the negative side, the high-temperature system is not capable of monitoring temperature during a digestion program. As a result, vessel rupture is common during method development. This results in complete destruction of the vessel, and the emission of potentially dangerous exhaust fumes into the laboratory environment.


References

  1. G. Damkröger, M. Grote and E. Janβen, Fresenius' J. Anal. Chem., 1997, 357, 817 CrossRef CAS.
  2. A. Abu-Samra, J. S. Morris and S. R. Koirtyohann, Anal. Chem., 1975, 47, 1475 CrossRef CAS.
  3. R. T. White Jr. and G. E. Douthit, J. Assoc. Off. Anal. Chem., 1985, 68, 766 Search PubMed.
  4. D. Chakraborti, M. Burguera and J. L. Burguera, Fresenius' J. Anal. Chem., 1993, 347, 233 CrossRef CAS.
  5. H. M. Kingston and L. B. Jassie, Anal. Chem., 1986, 58, 2534 CrossRef CAS.
  6. G. Heltai and K. Percsich, Talanta, 1994, 41, 1067 CrossRef CAS.
  7. J. Liu, R. E. Sturgeon and S. N. Willie, Analyst, 1995, 120, 1905 RSC.
  8. H. M. Kingston and L. B. Jassie, J. Res. Natl. Bur. Stand. (U.S.), 1988, 93, 269 Search PubMed.
  9. C. B. Rhoades Jr., J. Anal. At. Spectrom., 1996, 11, 751 RSC.
  10. M. Würfels, E. Jackwerth and M. Stoeppler, Anal. Chim. Acta, 1989, 226, 1 CrossRef.
  11. M. Würfels, E. Jackwerth and M. Stoeppler, Anal. Chim. Acta, 1989, 226, 17 CrossRef.
  12. M. Würfels, E. Jackwerth and M. Stoeppler, Anal. Chim. Acta, 1989, 226, 31 CrossRef.
  13. K. W. Pratt, H. M. Kingston, W. A. MacCrehan and W. F. Koch, Anal. Chem., 1988, 60, 2024 CrossRef CAS.
  14. H. J. Reid, S. Greenfield and T. E. Edmonds, Analyst, 1995, 120, 1543 RSC.
  15. J. Wang, in Stripping Analysis: Principles, Instrumentation and ApplicationsVCH, Deerfield Beach, FL, USA, 1985 ch. 4, pp. 104–107 Search PubMed.
  16. J. Golimowski and K. Golimowska, Anal. Chim. Acta, 1996, 325, 111 CrossRef CAS.
  17. A. Krushevska, R. M. Barnes and C. Amarasiriwaradena, Analyst, 1993, 118, 1175 RSC.
  18. R. Chakraborty, A. K. Das, M. L. Cervera and M. de la Guardia, Fresenius' J. Anal. Chem., 1996, 355, 43 CAS.
  19. K. Lamble and S. J. Hill, Analyst, 1995, 120, 413 RSC.
  20. E. J. M. Temminghoff and I. Novozamsky, Analyst, 1992, 117, 23 RSC.
  21. I. Equiarte, R. M. A. Lonso and R. M. Jiménez, Analyst, 1996, 121, 1835 RSC.
  22. M. Würfels, E. Jackwerth and M. Stoeppler, Fresenius' Z. Anal. Chem., 1987, 329, 459 CrossRef.
  23. R. T. White, J. Assoc. Off. Anal. Chem., 1989, 72, 387 Search PubMed.
  24. H. Matusiewicz, Anal. Chem., 1994, 66, 751 CrossRef CAS.
  25. R. Parosa and E. Reszke, in BM-1SII Technical User's Manual, Plazmatronika, Wroclaw, 1995 Search PubMed.
  26. C. B. Rhoades Jr., K. E. Levine, A. Salido and B. T. Jones, Appl. Spectrosc., 1998, 52, 200 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.