Selected highlights in the application of ion-exchangers . as supports for reagents in organic synthesis

(Note: The full text of this document is currently only available in the PDF Version )

Antony Chesney


Abstract

The development of cleaner and more efficient synthetic routes to minimise environmental damage has been approached in many ways. Amongst these are: improved catalytic methods, solvent free reactions, reactions employing water as the solvent, the application of supercritical fluids, new asymmetric methods to minimise the production of unwanted isomers and atom-efficient synthesis. In all of these cases, the focus is to reduce the amount of materials required to perform the desired synthetic step, to obtain products requiring the minimum amount of expensive and/or complex purification steps, and therefore to reduce waste. The use of supported reagents to achieve a variety of useful organic transformations, whilst achieving at least some of these objectives, is the object of this review.


References

  1. For reviews see: (a) L. A. Thompson and J. A. Ellman, Chem. Rev., 1996, 96, 555 CrossRef CAS; (b) E. M. Gordon, M. A. Gallop and D. V. Patel, Acc. Chem. Res., 1996, 29, 144 CrossRef CAS; (c) S. H. DeWitt and A. W. Czarnik, Acc. Chem. Res., 1996, 29, 114 CrossRef CAS.
  2. M. J. Suto, L. M. Gayofung, M. S. S. Palakani and R. Sullivan, Tetrahedron, 1998, 54, 4141 CrossRef CAS.
  3. For reviews of modified polymers see: (a) D. C. Bailey and S. H. Langer, Chem. Rev., 1981, 81, 109 CrossRef CAS; (b) A. Akalah and D. C. Sherrington, Chem. Rev., 1981, 81, 557 CrossRef CAS; (c) A. Akalah and D. C. Sherrington, Polymer, 1983, 24, 1369 CrossRef CAS; (d) D. C. Sherrington and P. Hodge, Synthesis and Separation using Functional PolymersWiley, Chichester 1988 Search PubMed; (e) S. J. Shuttleworth, S. M. Allen and P. K. Sharma, Synthesis, 1997, 1217 CrossRef CAS.
  4. (a) For a review of the applications of cationic ion-exchange resins in this context see: V. Chakrabarti and M. M. Sharma, React. Polym., 1993, 20, 1 Search PubMed; (b) For a recent example see: B. Baruan, M. P. Dutla, A. Baruan, D. Prajapati and J. S. Sandhu, Synlett, 1998, 8, 409 Search PubMed.
  5. Amberlyst and Amberlite are both trademarks of Rohm and Haas Co. Amberlyst A26 is a macroreticular resin, with a nominal exchange capacity of 1.0 mmol ml–1 wet, whilst Amberlite IRA 904 is a gel-type polystyrene resin with an exchange capacity of 0.6 mmol ml–1 wet. They are both available from Fluka.
  6. C. R. Harrison and P. Hodge, Soc. Perkin Trans. 1, 1982, 509 Search PubMed.
  7. M. Bessodes and K. Antonakis, Tetrahedron Lett., 1985, 1305 CrossRef CAS.
  8. A. S. Kande, R. B. Mane and M. M. Salunkhe, Indian J. Chem., Sect. B, 1991, 30, 984.
  9. N. B. Karalkar, M. M. Salunkhe, K. P. Talekhar and N. N. Maldar, Indian J. Chem., Sect. B, 1998, 37, 1184.
  10. B. Hinzen and S. V. Ley, J. Chem. Soc., Perkin Trans. 1, 1997, 1907 RSC.
  11. This resin has approximately twice the surface area of Amberlyst A26.
  12. B. Hinzen, R. Lenz and S. V. Ley, Synthesis, 1998, 977 CrossRef CAS.
  13. B. Hinzen and S. V. Ley, J. Chem. Soc., Perkin Trans. 1, 1998, 1 RSC.
  14. M. Calderelli, J. Habermann and S. V. Ley, J. Chem. Soc., Perkin Trans. 1, 1999, 107 RSC.
  15. (a) F. Haunert, M. H. Bolli, B. Hinzen and S. V. Ley, J. Chem. Soc., Perkin Trans. 1, 1998, 2235 RSC; (b) S. V. Ley, M. H. Bolli, B. Hinzen, A.-G. Gervois and B. J. Hall, J. Chem. Soc., Perkin Trans. 1, 1998, 2239 RSC; (c) M. H. Bolli and S. V. Ley, J. Chem. Soc., Perkin Trans. 1, 1998, 2243 RSC.
  16. For the initial preparation of cyanoborohydride supported on Amberlyst A26 resin see: R. O. Hutchins, N. R. Natale and I. M. Taffer, J. Chem. Soc., Chem. Commun., 1978, 1088 Search PubMed.
  17. H. W. Gibson and F. C. Bailey, J. Chem. Soc., Chem. Commun., 1977, 815 Search PubMed.
  18. Amberlite IRA-400 is a gel-type resin with an exchange capacity of 1.4 mmol ml–1, Amberlite IRA938 is a weakly basic gel-type exchange resin with a similar capacity.
  19. Resin AG1-X8 is a macroreticular 200–400 mesh anion exchange resin (chloride form) with an ion-exchange capacity of 2.5 mmol g–1, and was produced by BIO-RAD.
  20. K. M. Yoon, K. B. Park and Y. S. Gyoung, Tetrahedron Lett., 1983, 5367 CrossRef CAS.
  21. Y. Yamamoto, H. Toi, A. Sonoda and S. I. Murahashi, J. Am. Chem. Soc., 1976, 98, 1965 CrossRef CAS.
  22. A. R. Sande, M. H. Jagadale, R. B. Mane and M. M. Salunkhe, Tetrahedron Lett., 1984, 25, 3501 CrossRef CAS.
  23. Seralite SRA-400 is an 8% cross-linked polystyrene resin in chloride form, with a mesh size 20–50, and was produced by Sisco Research Laboratories, Bombay, India.
  24. A. Nag, A. Sarkar, S. A. Sarkar and S. K. Palit, Synth. Commun., 1987, 17, 1007 CAS.
  25. N. M. Goudagon, P. P. Wadgaonkar and G. W. Kabalka, Synth. Commun., 1989, 19, 805 CAS.
  26. G. W. Kabalka, P. P. Wadgaonkar and N. Chatta, Synth. Commun., 1990, 20, 293 CAS.
  27. N. M. Yoon, E. G. Kim, H. S. Yoon and J. Choi, Synth. Commun., 1990, 23, 1595.
  28. J. V. Weber, P. Faller and M. Schneider, C. R. Acad. Sci. Ser. 2, 1984, 299(18), 1259 Search PubMed.
  29. Y. K. Gordeev, G. A. Serebrennikova and R. P. Evstigeena, J. Org. Chem. USSR, 1986, 21, 2393.
  30. (a) N. M. Yoon and J. Choi, Synlett, 1993, 135 CrossRef CAS; (b) N. M. Yoon, H. J. Lee, J. H. Ahn and J. Choi, J. Org. Chem., 1994, 59, 4687 CrossRef CAS; (c) B. P. Bandgar, S. M. Nikat and P. P. Wadgaonkar, Synth. Commun., 1995, 25, 863 CAS; (d) J. Choi and M. N. Yoon, Tetrahedron Lett, 1996, 1057 CAS; (e) B. P. Bandgar, S. N. Kshirsagar and P. P. Wadgaonkar, Synth. Commun., 1995, 25, 941 CAS.
  31. (a) T. B. Sim and N. M. Yoon, Synlett, 1995, 726 CrossRef CAS; (b) T. B. Sim, J. H. Ahn and N. M. Yoon, Synthesis, 1996, 324 CrossRef CAS.
  32. (a) J. Choi and N. M. Yoon, Synth. Commun., 1995, 25, 2655 CAS.
  33. G. Gelbard, O. Louis-Andre and O. Cherkaoui, React. Polym., 1991, 15, 111 Search PubMed.
  34. G. Cainelli, F. Manesccalchi and A. Umani-Ronchi, J. Organomet. Chem., 1980, 276, 205 CrossRef CAS.
  35. T. N. Sorell and P. S. Pearlman, J. Org. Chem., 1980, 45, 3449 CrossRef.
  36. C. Boga, M. Contento and F. Manescalchi, Makromol. Chem., 1989, 10, 303 CAS.
  37. G. Cainelli, M. Contento, F. Manescalchi and M. C. Mussato, Synthesis, 1981, 302 CrossRef CAS.
  38. B. Tamami and A. R. Kiasat, Synth. Commun., 1998, 28, 1275 CAS.
  39. J. V. Weber, P. Faller, G. Kirsch and M. Schneider, Synthesis, 1984, 1045.
  40. N. M. Yoon, J. Choi and J. H. Ahn, J. Org. Chem., 1994, 59, 3490 CrossRef CAS.
  41. This material is commercially available from Fluka, as are resins 22 and 67.
  42. K. Smith, D. M. James, I. Matthews and M. R. Bye, J. Chem. Soc., Perkin Trans. 1, 1992, 1877 RSC.
  43. J. J. Parlow, Tetrahedron Lett., 1995, 36, 1395 CrossRef CAS.
  44. (a) G. Cardillo, M. Orena, S. Sandri and C. Tomasini, Chem. Ind., 1983, 64 Search PubMed; (b) J. H. Clark, Chem. Rev., 1980, 80, 429 CrossRef CAS.
  45. A. J. Bellamy, React. Polym., 1994, 23, 101 Search PubMed.
  46. E. Larsen, T. Koford and E. Pedersen, Synthesis, 1995, 1121 CrossRef CAS.
  47. U. Stelzer and E. Effenburger, Tetrahedron Asymmetry, 1993, 4, 161 CrossRef CAS.
  48. S. Colonna, A. Re, G. Gelbard and E. Cesarotti, J. Chem. Soc., Perkin Trans. 1, 1978, 2248 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.