Selective carbomethoxylation of aromatic diamines . with mixed carbonic acid diesters in the presence of phosphorous acids

(Note: The full text of this document is currently only available in the PDF Version )

Michele Aresta, Angela Dibenedetto and Eugenio Quaranta


Abstract

The reactivity of industrially relevant amines, 4,4′-methylenedianiline (MDA) and 2,4-diaminotoluene (TDA), towards methylphenylcarbonate (MPC), in the presence of Ph2P(O)OH, has been investigated. Both MDA and TDA are catalytically and selectively converted into mono- and di-methylcarbamate esters. Under the relatively mild working conditions used, the formation of ureas and/or N-methyl derivatives is totally repressed. The full spectroscopic characterization of the compounds formed upon interaction of amines with Ph2P(O)OH is also reported. The methodology here described also holds for other mono- and di-amines, both aliphatic and aromatic.


References

  1. M. Aresta and E. Quaranta, ChemTech, 1997, 27(3), 32 CAS.
  2. B. B. Mathur and G. Krishna, Chem. Warf. Agents, 1992, 237 Search PubMed.
  3. H. Babad and A. G. Zeiler, Chem. Rev., 1973, 73, 75 CrossRef CAS.
  4. (a) M. Aresta and E. Quaranta, J. Org. Chem., 1988, 53, 4153 CrossRef CAS; (b) M. Aresta and E. Quaranta, Ital. Pat., 1198206, 1988 Search PubMed; (c) M. Aresta and E. Quaranta, J. Chem. Soc., Dalton Trans., 1992, 1893 RSC; (d) M. Aresta and E. Quaranta, Tetrahedron, 1992, 48, 1515 CrossRef CAS; (e) M. Aresta and E. Quaranta, Ital. Pat., 1237208, 1993 Search PubMed; (f) M. Aresta, A. Dibenedetto and E. Quaranta, J. Chem. Soc., Dalton Trans., 1995, 3359 RSC.
  5. (a) J. Barthelemy, Lyon Pharm., 1986, 37(6), 297 Search PubMed; (b) T.-T. Wu, J. Huang, N. D. Arrington and G. M. Dill, J. Agric. Food Chem., 1987, 35, 817 CrossRef CAS; (c) T. Kato, K. Suzuki, J. Takahashi and K. Kamoshita, J. Pesticide Sci., 1984, 9, 489 Search PubMed; (d) P. Picardi, La Chimica e l'Industria, 1986, 68(11), 108 Search PubMed; (e) F. Rivetti, U. Romano and M. Sasselli, US Pat., 4514339, 1985 Search PubMed.
  6. (a) A. Cahours, Annalen, 1845, 56, 266 Search PubMed; (b) N. Bortnick, L. S. Luskin, M. D. Hurwitz and A. W. Rytina, J. Am. Chem. Soc., 1956, 78, 4358 CrossRef CAS; (c) C. Hagemann, Kohlensaure derivate in Methoden der Organischen Chemie, ed. Houben-Weil, Georg Thieme Verlag, Stuttgart, 1983, 4th edn., Band E4, p. 159 Search PubMed.
  7. P. Adams and F. A. Baron, Chem. Rev., 1965, 65, 567 CrossRef CAS.
  8. M. Massi Mauri, U. Romano and F. Rivetti, Ing. Chim. Ital., 1985, 21, 6 Search PubMed and references therein.
  9. P. Kock and U. Romano, Ital. Pat. Appl., 20264 A/8 Search PubMed.
  10. M. Aresta, C. Berloco and E. Quaranta, Tetrahedron, 1995, 51, 8073 CrossRef CAS.
  11. (a) Y. Tamura, J. Haruta, S. Okuyama and Y. Kita, Tetrahedron Lett., 1978, 39, 3737 CrossRef; (b) Y. Kita, J. Haruta, H. Tagawa and Y. Tamura, J. Org. Chem., 1980, 45, 4519 CrossRef CAS; (c) Y. Kita, J. Haruta, H. Yasuda, K. Fukunaga, Y. Shirouchi and Y. Tamura, J. Org. Chem., 1982, 47, 2697 CrossRef CAS.
  12. F. Porta, S. Cenini, M. Pizzotti and C. Crotti, Gazz. Chim. Ital., 1985, 115, 275 CAS.
  13. (a) M. Aresta and E. Quaranta, Tetrahedron, 1991, 47, 9489 CrossRef CAS; (b) M. Aresta and E. Quaranta, Ital. Pat., 1237207, 1993 Search PubMed.
  14. (a) F. F. Frulla, A. F. Stuber and J. P. Whitman, US. Pat., 4550188, 1985; Chem. Abstr., 1986, 104, 224725u Search PubMed; (b) A. E. Giurgiolo, US Pat., 4268684, 1981, Chem. Abstr., 1981, 96, 97407k Search PubMed; (c) A. E. Giurgiolo, US Pat., 4268683, 1981, Chem. Abstr., 1981, 95, 168832h Search PubMed; (d) U. Romano and R. Tesei, Ger. Offen., 2716540, 1977, Chem. Abstr., 1978, 8837459 Search PubMed; (e) T. Onoda, K. Tano and Y. Hara, Jpn. Pat. Appl. 04316, 1980 Search PubMed; (f) H. J. Buysch, H. Krimm and W. Richter, Eur. Pat. Appl., 48371, 1982 Search PubMed; (g) U. Romano, G. Fornasari and U. Sgambato, Ital. Pat. Appl., 22967 A/82 Search PubMed.
  15. (a) Anon., Res. Discl., 1987, 275, 162 Search PubMed; Chem. Abstr., 1988, 108, 167429g Search PubMed; (b) U. Romano, G. Fornasari and S. Di Gioacchino, Ger. Offen., DE 3202690, 1982; Chem. Abstr. 1982, 97, 144607d Search PubMed; (c) T. Mukai, K. Suenobu and M. Masago, Jpn. Kokai, 77; 14745, 1977, Chem. Abstr., 1977, 87, 52961e Search PubMed.
  16. (a) W. B. Knight, Carboxyphosphate: Predicted Chemical Properties, Synthesis and Role as an Intermediate in Enzymic Reactions, in Enzymatic and Model Carboxylation and Reduction Reactions for Carbon Dioxide Utilization, ed. M. Aresta and J. V. Schloss, Kluwer Academic Publishers, Dordrecht, 1990, NATO-ASI Series C, vol. 314, p. 239 Search PubMed; (b) V. Rubio, Biochem. Soc. Trans., 1993, 21, 198 CAS.
  17. (a) M. Aresta, A. Dibenedetto and E. Quaranta, Tetrahedron, 1998, 54, 14145 CrossRef CAS; (b) M. Aresta, A. Bosetti and E. Quaranta, Ital. Pat. Appl, 002202, 1996 Search PubMed.
  18. As a comparison, neither 3a nor 4a were formed when a mixture of 1a(0.0305 g, 0.154 mmol) and MPC (0.047 g, 0.308 mmol) in THF (0.5 mL) were heated at 363 K for 24 h, in the absence of any catalyst. Only methylated amines were formed under the above conditions.
  19. It is worth noting that heating a THF (1 mL) solution of 1b(0.0405 g, 0.332 mmol) and MPC (0.100 g, 0.664 mmol) at 363 K for 6 h, in the absence of any catalyst, affords 3b in 0.2% yield, whereas no dicarbamate 4b was found to form under these conditions.
  20. The reaction of 1a(1.005 g, 5.05 mmol) with DMC (10 mL) in the presence of Ph2P(O)OH (0.13600 g, 0.624 mmol) at 363 K did not afford either 3a or 4a, but, after 63 h, (4-methylaminophenyl)-4-aminophenylmethane (m/z = 212) and dimethylation products (m/z = 226) were found (by GC-MS) as the unique reaction products. When a DMC (10 mL) solution of 1b(1.003 g, 8.20 mmol) and Ph2P(O)OH (0.17850 g, 0.820 mmol) was heated at 363 K for 64 hours, both monocarbamates 3b(the most abundant) and 3bapos; were formed, but with very low selectivity as considerable amounts of mono-(m/z = 136) and di-methylated amine (m/z = 150) were found as by-products. Higher temperature, or the use of solvents other than DMC (THF, for example), did not improve the yield or selectivity of the carbomethoxylation reaction, but favoured the methylation process.
  21. D. D. Perrin, W. L. F. Armarego and D. R. Perrin, Purification of Laboratory Chemicals, Pergamon Press, Oxford, England, 1986 Search PubMed.
  22. J. Stratton, B. Gatlin and K. S. Venkatasubban, J. Org. Chem., 1992, 57, 3237 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.